
Construction of Irregular LDPC Codes by
Row Partition

Xiongfei Tao, Yan Zhang, Pan Liu, and Zuoqi Hu

Abstract In this paper, we propose an approach to construct a class of irregular
low-density parity-check (LDPC) codes based on row partition. We divide the rows
of LDPC check matrix into subsets and derive an approach to arrange ’1’ in each
column to prevent low weight code words. When decoded by iterative algorithm,
the proposed codes show performance with low error floor and are subject to few
undetected errors. The LDPC codes constructed based on the proposed scheme
have efficiently encoding structures.
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1 Introduction

Low-density parity-check (LDPC) codes were original invented by Gallager in 1963
[1], he considered only regular LDPC codes. Luby and etc[2] introduced irregular
graph into LDPC codes, which improved the performance of the LDPC codes in
waterfall region. Richardson[3] employed density evolution (DE) to predict the
threshold of LDPC codes with a certain degree profile, moreover density evolution
can be used to optimize degree profile with a threshold near Shannon limit. Howev-
er, an LDPC code with an optimized degree profile does not necessarily guarantee
good performance of the code.

The performance of an LDPC code depends on not only the structure of its Tan-
ner graph and its weight distribution of code words. Originally, most construction
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Figure 1: Graphs of low weight code words structure

methods focused on constructing LDPC codes with big minimum cycle (or girth)
which is suitable for iterative decoding. An well-known method to construct LDPC
codes with large girth is progressive edge growth (PEG)[4] algorithm. Although the
girth and minimum distance of an LDPC code have relationship to some extent, the
girth does not guarantee large minimum distance. The LDPC codes with large girth
may still have low weight code words, especially irregular codes.

Approaches to the construction of LDPC codes can divide into two major class-
es: random-like constructions and algebraic constructions. Random approaches can
construct LDPC codes that closely achieve the Shannon capacity but the significan-
t encoding complexity of random codes leads to hard implementation in hardware
while structured LDPC codes have hardware-friendly encoding. However, even well
designed LDPC codes have large minimum distance, their code words weight dis-
tribution may not be good. Take QC-LDPC codes as an example, QC-LDPC codes
are popular codes in nowadays. An QC-LDPC code is consist of numbers of sub-
blocks, each subblock is either a p× p zero matrix or a p× p circulant shift matrix
of an identity matrix. Due to the quasi cyclic character of QC-LDPC codes, the
number of a certain code word weight is multiplicity of p. The presence of a large
number of low-weight codewords is critical to both the error floor and probability
of undetected errors.

In this paper, a design method of the irregular LDPC codes is proposed to obtain
both good performance and practically allowable encoding complexity.

2 Low weight code words of irregular LDPC codes

The target of most methods on the construction of irregular LDPC codes is to design
code graphs with good properties, such as girth. However, irregular LDPC codes
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have a large amount of bit nodes with degree 2 and 3. Large cycle does not guarantee
large distance. As a typical example, suppose that there is a cycle which consist of
d bit nodes with degree 2. The module-2 sum of the columns corresponding to these
bit nodes is a zero vector, hence there is a code word with weight d. Although this
condition can be broken by making the degree 2 bit columns cycle free among them,
there exists other condition of low weight code words constituted of some degree
2 and a small amount of degree 3 bit nodes, and according to the property of code
words of linear codes, the multiplicity of degree 3 bit nodes is even. Some examples
are shown in Fig.1. Fig.1(a) and (b) illustrate how low weight code words consist of
some bit nodes with degree 2 and two bit nodes with degree 3, and Fig.1(c) and (d)
give examples of low weight code words constituted of some bit nodes with degree
2 and four bit nodes with degree 3.We translate the subgraph in Fig.1(a) and (b) into
the form of matrix as shown in Eq.(2) and Eq.(1).
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It is shown in the matrices that the degree 2 bit nodes are divided into three
groups and there are two degree 3 bit nodes in those matrices. Each columns with
degree 3 in Eq.(2) has 2 ’1’ in the same group, and the remaining ’1’ in the two
columns are in a common group. For Eq.(1), ’1’s in the 2 columns with degree 3 are
in the same 3 groups. In Fig.1(c) and (d), the code words consist of several degree
2 bit nodes and 4 degree 3 bit nodes and there exists cycles constitute of several
degree 2 bit nodes and 3 or 4 degree 3 bit nodes.

3 The approach of our construction

3.1 Method to eliminate low weight code words

For the construction of an LDPC code whose check matrix has m rows and n
columns, We divide the m rows of the check matrix into g partition, we put columns
with weight 2 in the parity-check position of each partition and there are no columns
with weight 2 crossover any two partitions. We make weight 2 columns cycle free,
the cycle free condition can be achieved by downward shifting two consecutive ’1’
from the top of each partition until the second ’1’ reaches the bottom of them, hence,
there are no code words consist of only degree 2 bit nodes. To eliminant the code
words consist of several degree 2 bit nodes and 2 degree 3 bit nodes, we adopt the
following principle:

• If there are 2 columns in both of which 2 ’1’s locate in the same partition, then
the two remaining ’1’s in the columns should not share a common partition;

• For any pair columns in which 3 ’1’s are in different partitions, then the pair
columns should share at most two partitions.

For the low weight code words in other cases like that of Fig.1(c) and (d), in
which there are four degree 3 bit nodes, it is nearly impossible to eliminant the
pattern if the construction of middle length codes are considered. But as mentioned
before, there exists cycles constitute of several degree 2 bit nodes and 3 or 4 degree
3 bit nodes in such pattern of code words, thus if we enlarge cycles in such cases,
the weight of the code words in which 4 degree 3 bit nodes participate should be
improved potentially. Consider a column with even weight, the ’1’s in this column
should possess several partitions, if there are even ’1’s in each partition then it is a
big chance to form a low weight code word, this condition should be avoided during
the construction. The whole procedure is built on standard PEG algorithm. After
a tree expansion is obtained, we try to find an appropriate partitions which prevent
the forming of low weight code words. Moreover when expanding a tree from a bit
node, if there are already 4 degree 3 bit nodes in a branch then we do not add degree
3 bit nodes into this branch anymore. This tactics maximize the the cycles constitute
of several degree 2 bit nodes and 3 or 4 degree 3 bit nodes.
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3.2 A fast encoding method

H refers to the check matrix and c refers to the codeword. H is divided into two
parts Hp and Hu, and Hp is further divided into Hp1 and Hp2,

H = (Hp|Hu) = (Hp1|Hp2|Hu) (3)

where Hp1 and Hp2 are corresponding to p1 and p2 which are redundant bit
nodes of c and Hu is corresponding to u which are information bit nodes of c. Hp1

represent the m−g columns with weight 2, we put g columns with weight 3 in Hp2,
and arrange the ’1’s based on the following principle:

• For the first column, we put a ’1’ in the first row of the first partition, and put
two ’1’s in the first and last row of the next partition;

• The other columns can be obtain by downward cyclic shifting the pattern of
the first column by g − 1 times.

Under this design, there are only two non-zero columns in each partition of Hp2,
the weights of these 2 columns are 1 and 2 respectively. For each partition, we make
row transformation by adding other rows to the first one, then only one ’1’ remain
in the first row of each partition in Hp. By performing column permutations, Hp

will be in the form of upper triangle, which leads the row rank of the check matrix
equal to m, and hence its null space gives an (n, m) LDPC code with an actual rate
of 1-m/n.

We can easily solve the first equation in each partition and get the value of p2
and the value of p1 can be calculate by backward substitution. And furthermore,
after the value of p2 is obtained, the equations in one partition are independent of
the equations in other partition, hence each partition can be encoded in parallel.

4 Simulation Result

In this part, we estimate the performance of (1728, 864) irregular LDPC codes con-
structed based on PEG algorithm, Jinhu’s[5] approach and our approach over an ad-
ditive white Gaussian noise (AWGN) channel, with the standard BP decoding and
a maximum number Imax=100 iterations. The bit and check degree distributions
of the PEG-based code and our code are λ(x) = 0.2716x + 0.3333x2 + 0.3951x7

and ρ(x) = 0.2222x5 + 0.7778x6, respectively. In Jinhu’s paper, he changed the
distributions which is suitable for his construction. Under this distributions, there
are 792, 648 and 288 bit nodes with degree 2, 3 and 8 respectively. We divide the
864 rows of the check matrix into 72 partitions, there are 12 rows in each partition.

We apply the impulse method of [6] to compute low-weight codewords for the
three (1728, 864) codes and list the weight distributions in Table 1. From Table 1, we
observe that the minimum distances of PEG code, Jinhu’s code and proposed code
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Table 1: List of Weight Profiles For Three Codes
w PEG Jinhu pro.
14 1 - -
15 - - -
16 1 - -
17 2 - 1
18 1 36 3
19 3 - 2

w PEG Jinhu pro.
20 5 36 2
21 6 - 5
22 8 - 3
23 10 2 11
24 22 37 15
25 29 36 23
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Figure 2: Simulation result and performance comparison

are 14, 18 and 17 respectively. Although the minimum distance of proposed code is
slightly smaller than Jinhu’s code, the proposed code shows a better distribution of
code weight. We also test the girth parameters of the three codes, the girths of these
codes are 8, 4 and 8 respectively.

Fig.2 depicts the frame error rate (FER) and undetected frame error rate of these
three codes. We observe that in the high signal-to-noise ratio (SNR) region, the
proposed scheme reduces the error floor compared to the PEG-based LDPC code.
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We also observe that the LDPC code constructed based on the proposed approach
has much less undetected errors than the PEG-based LDPC code. The undetected
FER of the proposed code is about two orders of magnitude below that of the PEG
one. Fig.2 also shows that the proposed code has better performance than Jinhu’s
code. Although the minimum distance of Jinhu’s code is the largest among these
three codes, but we believe that it is the poor weight distribution that leads to relative
worse performance of FER and undetected FER.

5 Conclusion

In this paper, a construction of irregular LDPC codes is proposed. To design a
irregular LDPC code with good distance distribution, we divide the check matrix
into several partitions, in each partition columns with weight 2 is cycle free, and
any two partitions is not linked by columns with weight 2. We select location of ’1’s
in each columns to avoid the code words consist of several degree 2 bit nodes and
2 degree 3 bit nodes and avoid the low weight codes with other patterns by enlarge
the cycles consist of several degree 2 bit nodes and 3 or 4 degree 3 bit nodes. We
derive a structure of such irregular LDPC codes to achieve fast encoding.
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