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Abstract. Vehicle counting in traffic videos plays an essential role in traffic sur-

veillance system. It can provide some important traffic information such as con-

gestion level and statistical analysis of traffic flow. In this paper, a novel vehicle 

counting strategy, which is based on foreground detection algorithm in videos, is 

proposed. Two advantages are contributed by our method. First, it is cost-saving 

as no additional hardware devices are required. Second, the influence to perfor-

mance caused by weather variations is eliminated by the use of foreground detec-

tion technique. Finally, We compare our method with the state-of-the-art methods, 

and the experimental results clearly demonstrate the effectiveness of our method 

on complex real world traffic videos.  
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1 Introduction 

Vehicle counting in traffic videos is a challenging research issue in computer vi-

sion as unpredicted realistic conditions should be handled, such as uncontrolled il-

luminations, cast shadows and visual occlusion. Accurate vehicle counting can 

provide some important traffic information such as information about congestion 

level and traffic flow et al. It can also be treated as essential input for vehicle 

monitoring system, which can result in semantic traffic information, such as travel 

time prediction and driving behaviour analysis. If such information could be used 

efficiently, the problem about traffic congestion and environmental pollution can 

be solved more easily. In addition, the information is also useful to road safety [1].  

In the past few years, a lot of strategies have been proposed to address this 

problem. The cameras optical axis are set to be perpendicular to the road plane by 

some approaches. However, the range and amount of visual information available 
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is severely reduced by this configuration, as compared with a perspective camera 

configuration [2]. An alternative solution is to use more than one cameras (i.e., 

stereo vision) [3] or use nonvisual sensors, such as inductive loops or laser sen-

sors, in as supplementary means to aid the vision system [4]. However, additional 

work caused by the installation and signal-processing complexities of nonvisual 

sensors makes the generalization progress more difficult [1]. As a result, the 

methods based on computer vision and image processing are attracting more and 

more attention due to its low cost and ease of use. 

In general, foreground detection methods can be categorized into temporal dif-

ferencing, optical flow and background modeling. Temporal differencing [5] is 

usually inaccurate and often leads to disintegration in the detected object, such as 

holes. Optical flow methods often suffer a heavy computation load when adopted 

in real-time applications. Generally, the background model [6] [7] can overcome 

the weaknesses above. However, the dominant background modeling methods 

[10], [11], [12] adopt a single feature (color or texture feature) to solve these prob-

lems, while the performances are usually unsatisfactory when handling complex 

scenes. One of the most popular methods is Gaussian Mixture Models (GMM) 

[12] which presents pixels with color feature. Despite its success, the method uses 

only pixel color or intensity information to detect foreground objects, which may 

fail when foreground objects have similar color or intensity to the background. 

Due to the advantages of texture feature [13], [14] in many applications, Heikkia 

et al. [15] developed a novel background modeling method, in which region histo-

grams of LBP were calculated and the background was extracted based on these 

region histograms. However, background modeling methods using texture feature 

cannot detect changes in sufficiently large uniform regions if the foreground is al-

so uniform. Thus, we utilize multi-scale fusion of texture and color for back-

ground modeling [7], which is robust to noise and illumination variations and can 

suppress the moving soft shadows. 

The rest of this paper is organized as below. Section 2 presents our proposed 

approach. Section 3 demonstrates the experimental results are more accurate than 

the state-of-the-art methods on the real world traffic videos. In section 4, we con-

clude this paper. 

2 Approach 

In this section, details of the proposed Vehicle Counting Algorithm is presented, 

which contains traffic videos capture, foreground detection and vehicle counting. 
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2.1 Capture traffic videos 

The traffic videos are captured by CCD TV, saved using computers hard disk and 

used as the input of our algorithm. The frame rate of the captured videos are 50 

frames per second, each frame of which is of the size 640480.. 

2.2 Foreground detection 

In this section, our approach using multi-scale fusion of texture and color for 

foreground detection is presented [7]. 

1) Texture feature:  

Scale-invariant Center-symmetric Local Ternary Pattern, SCLTP for short, is 

selected as the texture feature. Given any pixel location (r, c), it can be encoded 

as: 
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where ni and ni+N/2 correspond to the gray values of center-symmetric pairs of N 

neighboring pixels equally spaced on a circle of radius R,  denotes concatena-

tion operator of binary strings, and  is a scale factor indicating the comparing 

range. Each comparison can generate one of the three values in Eq. 2, so the 

SCLTP operator encodes 2 bits.  

There are three advantages for the SCLTP operator in foreground/background 

segmentation. First, it is compute efficient, which has only one more comparison 

step than LBP operator. Second, the SCLTP operator is robust to both noise and il-

lumination by introducing a scale factor. Moreover, this scale factor make the op-

erator robust to soft shadow, which is based on the fact that soft shadow is darker 

than the local background region. Third, the SCLTP operator can represent more 

texture information with less bits. Concretely, as only center-symmetric pairs of 

pixels are compared, only 8 bits are required to represent a pixel with all its 8 

neighboring pixels, while 16 bits is used in SILTP operator. 

2) Color feature: 

 Photometric invariant color is selected as the color feature. The three compo-

nents in RGB space are first normalized, and a shadow invariant color distance is 

utilized to compare an observed color value with a color mode. Through the ob-

servation, the pixel values are mostly distributed along the line going toward the 
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RGB origin point (0; 0; 0), when the illumination changes [7]. Thus, the difference 

between the observed color pixel and a background color pixel is measured by us-

ing their relative angle with respect to the origin in RGB color space. 

3) Background modeling by fusing texture and color features: 

Several statistical background models are applied, all of which are fusion the 

texture and color features. The background model M(x) at each pixel x is 

represented as: 

M(x) = {K, mk(x)k=1,…, K }                                            (3) 

where at most K models are applied. Each model mk(x) consists of 5 compo-

nents: 

mk(x) = {Ik, kI , kI ,SCLTPk,  k }                                   (4) 

where Ik denotes the average RGB vector Ik = ( , , )R G B

k k kI I I of model mk(x). 

kI and kI indicate the maximal and minimal RGB vectors model mk(x) can 

achieve. SCLTPk is the average of Scale-invariant Center-symmetric Local Ter-

nary Pattern. k    [0,1] denotes the weight which indicates the probability that 

this pixel belongs to the background. Obviously, the texture and color features are 

combined into each model. 

Given a new pixel x at time t, the SCLTP pattern is calculated and the RGB 

value are normalized firstly. Then the algorithm calculates the distance between 

the new pixel and each model at time t-1 which belongs to the background. Details 

about the distance Dis(x, m
1t

k


) will be discussed in the next subsection. If the dis-

tance to the closest model is greater than a pre-defined threshold (i.e. Dis(x, 

m
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where init is a low valued initial weight. If the number of the models reaches K, 

the new model takes place the existing model which has the lowest weight, and 

otherwise the new model is added to the list of models. On the contrary, if the dis-

tance to the closest model is smaller than the threshold (i.e. Dis(x, m
1t

k


)   TA), 

this closest model is updated as follows: 
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Meanwhile, only weight parameter   is updated for other models. In Eq. 5,   

  is the learning rate for the update rule of the minimum and maximum color 

values. This makes the process robust to noise.  is the learning rate that controls 

235



  

the update of the color and texture features.  manages the updating rate for the 

model weight. 

After the update step, all the weights are normalized and sorted in descending 

order and the first B models are selected as background model: 

1
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                                        (6) 

where TC is a threshold between 0 and 1 which indicates how much proportion 

of the data should be included in the background model. Then, the pixel can be 

classified as foreground or background using these models. Let D denote the clos-

est distance between the pixel and B background models. Decisions of foreground 

and background segmentation can be made by thresholding D with a predefined 

parameter TF . 

4) Texture and color distance: The distance of texture andcolor features is de-

fined as: 
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where DisT and DisC denote texture distance and color distance respectively. 

 is a parameter balancing texture distance and color distance which is empirical-

ly set to 0.7. The smaller distance Dis(x, m
1t

k


) is, the better pixel matches the 

model. The texture distance is defined as: 
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where P is the total number of involved neighbors, and D(,) is defined as: 
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Here, TD is a threshold which is empirically set to 0.2. The color distance is de-

fined as: 
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where DA and DR are two distances based on relative angle and the color range. 

DA is defined as: 
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where is the angle between two RGB vectors I
1t

k


and I

t
(x). n is the maxi-

mum amount of noise that can be tolerated, which is empirically set. DR is defined 

as: 
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where ,k lI =min(  I 1t

k

 ,
1t

kI
 )(   [0.4, 0.7]), and ,k hI =max(  I

1t

k


, 

1t

kI
 )([1, 1.2]). This equation indicates the pixel color values in the range 

of ,k lI and ,k hI . 

5) Multi-scale strategy: After the above feature fusion process, the multi-scale 

strategy is also applied. The consideration of multi-scale strategy is based on two 

folds: 1. Using one scale, holes in foreground sometime appears when the fore-

ground is large; 2. multi-scale analysis can provide more information for back-

ground modeling. 

Specifically, the video frame is divided equally into size of v v blocks which 

are non-overlapping. Then we calculate the mean value in each block, and down-

sample the frame by v. In the down-sampled frame, we calculate the closest dis-

tance between the pixel and models which belong to the background as Eq. 7. Fi-

nally, the resulted closest distances are up-sampled bi-linearly to the original size. 

Afterwards, we adopt the average of closest distances at each scale as the final 

closest distance, which is defined as: 
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where DisVz (x, m
1t

k


) is the closest distance of pixel x at z-th scale. Decisions 

of foreground and background segmentation can be made by thresholding Disfin-

al(x, m
1t

k


) with the predefined parameter TF. It is noticeable that in our multi-scale 

fusion algorithm, the texture feature SCLTP can be replaced by other unordered 

features (i.e. other variants of LBP), such as CLBP [8], and DLBP [9]. 

 
Fig. 1 The process of vehicle count 

C. Vehicle count 

After the vehicle detection process, the detected vehicles in the traffic videos 

are counted by setting a virtual line. An example of vehicle detection results and 

the virtual line are shown in Fig. 1. The conditions of virtual line are 1 or 0, where 

1 represents there is a vehicle passing through the virtual line and 0 otherwise. The 

conditions of virtual line are ensured by analysis the variance of pixels on it. To 

suppress the noise and high frequency component, a Low-pass filtering (LPF) is 

used through the virtual line and then the variance of pixels on the virtual line is 

computed. If the variance is bigger than a pre-defined threshold, there is a vehicle 

passing through the virtual line. 
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3 Experiment Results 

In this section, the performance of our method is evaluated on real world traffic 

videos which contain both illumination variation and complex scenes. The size of 

all the frames are normalized to 240180. The foreground detection technology 

fusing SCLTP and photometric invariant color is named "MFTC" in this section. 

For the multi-scale fusion technique, two scales selected and v is set to be 2 and 3. 

A set of consistent parameters are used for all experiments, that is R= 1, N = 8, 

and = 0.05 for the SCLTP operator; the maximum number of models K=3 for 

each pixel; TA = 0.2, TC = 0.7, TF = 0.2 and      = 0.005 for learning rate; 

TD = 0.2 for the texture distance; = 0.5,  = 1.2 in the color distance computa-

tion. Our algorithm is carried out on a standard PC with 2.33GHz Intel Core(TM) 

2 Duo CPU and it is capable of real-time processing. 

Table 1 The experiment results 

Methods Weather Experimental results Manual count 

Temporal differencing Fine day 89 
104 

Our method Fine day 96 

Temporal differencing Cloudy day 72 
97 

Our method Cloudy day 85 

The process of vehicle count is shown in Fig. 1. From the figure, we can see 

that when the vehicle passes through the virtual line, it will be counted. The 

counted vehicles are marked by red rectangles, which are shown in the right part 

of Fig. 1. It should be noted that since the foreground detection technique is se-

lected, only the vehicles rather than shadow are detected. 

Quantitative evaluations of our proposed algorithm is also performed in this 

paper as shown in Table 1 which show the results in fine day and cloudy day re-

spectively. From the table, we can see that our method achieves better results than 

Temporal differencing method, even in the cloudy day. 

4 Conclusion 

In this paper, we propose a novel vehicle counting method which is based on 

foreground detection. There are two advantages for our method. One is cost-

saving, as no additional hardware are required. The other is invariance to villain-

ous weather situation, which is realized by utilizing foreground detection tech-

nique. Then the method is compared with the Temporal differencing method, and 
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the experimental results demonstrated that it can achieve higher classification ac-

curacy in complex real world traffic videos. 
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