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Abstract—Coal moisture control process is a critical process in 
energy saving, pollution reduction and improving production 
efficiency and the quality of coke. To achieve precise control of 
coal moisture control system, against their strong coupling, 
large, nonlinear systems with time-delay characteristics using 
the RBF artificial neural network approach for modeling. And 
use the bionic BFO (Bacterial Foraging Optimization) 
according to the fitness to optimize the RBF Neural network 
parameters. Also compare the RBF Neural network 
performance optimized by these bionic BFO in order to 
achieve better results. This method provides a theoretical basis 
for accurate control of coal moisture process. To created the 
conditions for the reduction of energy and pollution with 
improving the quality of coke. 

Keywords- coal moisture control; BFO; modeling; 
optimization 

I. INTRODUCTION 
CMC (coal moisture control) is a key procedure in 

coking to save energy, reduce pollution and improve 
productivity and quality. It is through direct or indirect 
heating that coal moisture is controlled within about 6% 
before putting into furnace and remain stable to ensure 
production with high efficiency and low consumption. 

Coal moisture control system is a multi-parameter, strong 
coupling and non-linear system with large time delay, of 
which the model can hardly be established through 
mechanism. Online moisture monitoring on the dryer gate 
rarely provides reliable data for the disturbance of moisture 
and dust. In production, there is about 15 hour delay in 
detecting the moisture of coal out of the dryer and provides 
little reference to real production. Such large time delay can 
be handled when the moisture is stable, but will influence the 
effect of moisture control system when the coal moisture out 
of the dryer is quite sensitive to the weather in open-air coal 
ground in rainy season in southern China. Therefore, it is of 
great importance to find relationships between such 
parameters as steam consumption and flue gas temperature, 

moisture of coal in and out of the dryer under different 
conditions by analyzing and thus establishing control system 
to realize automatic online control of coal moisture. 

For the modeling of coal moisture control, Ergun[1] 

adopts linear partial differential equation to describe the 
mathematical model of coal drying in prompt dropping phase 
assuming that evaporation only occurs in the surface of solid, 
which is not satisfactory to coal with complicated 
construction. For the strong coupling of coal moisture 
control, Gao Jianjun[2] provides a mathematical model based 
on equilibrium between moisture and coal and thermal 
balance of control volume with moisture control reactor as 
the control volume, to calculate the flue gas volume, 
temperature of in and out waste gas and effect of coal 
moisture before treating on the humidified coal powder and 
waste gas moisture. The study adopts Bacterial Foraging 
Optimization (BFO) algorithm to establish and optimize the 
RBF Neural Network Model based on thermal equilibrium 
theory and relevant analysis so as to solve the problems 
occurs in other modeling. 

II. PROCESS AND MODELING 

A. Process 
Coal moisture controlling system in Bao Steel is studied 

and indirect type steam tube rotary dryer, dust catcher, fluid 
reservoir, flash tank, draught fan, pipeline, steam tube and 
conveyer belt and etc., are involved in the system. Figure 1 
shows its process.  

In the process, there are over 30 factors that influence 
directly or indirectly the coal moisture after drying, including 
output, stream pressure, pressure of condensate tank, steam 
temperature, real steam flow, steam pipeline flow, main 
motor current, current of feed screw and discharge screw, 
current of draught fan, output of draught fan, CO strength in 
flue gas, steam flow heated by recycle gas, temperature of 
recycle gas, outlet gas flow rate, recycle gas flow rate, blast 
volume, pressure of dryer inlet, temperature of blast, 
pressure differences of dust catcher, gas temperature of dryer 
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outlet, gas temperature of inset and outlet, gas pressure of 
inlet and outlet, bag temperature of catcher, dust hopper 
temperature, temperature and pressure of reverse nitrogen, 
oxygen content of desiccant and inlet coal moisture. 

 
Fig.1 Coal Moisture Control process  

By analyzing the data of coal moisture controlling based 
on thermal equilibrium mechanism and mathematical 
statistics theory and relationships between variables with the 
aim of saving energy and reducing consumption with high 
control accuracy, such independent variables most relevant 
to steam volume are identified to be as input and output of 
the control system, including coal to be treated, gas 
temperature of dryer outlet, inlet coal moisture, outlet coal 
moisture. 

B. Modeling 
For the characteristics of non-linear, multi-input and 

strong coupling and low accuracy of online detecting of 
outlet coal moisture, RBF artificial neural network is adopted 
for modeling. Figure 2 shows the structure, of which 

1x , 2x …are inputs， 1c ， 2c ， kc are center vectors，

Φ k k( x - c ,s )  is Gauss function， kiw is weight。  
 

 
Fig.2 RBF Artificial neural network 

Number of units in input layer: as the input layer is the 
cache of outer data and depends on the dimensions of input 
vectors, the number of units in input layer is set as 3. 

Number of units in output layer: to simplify the system 
and save the cost of calculation, the number of units in 
output layer is set as 1. 

Number of hidden units: is set as 8 after training 100 set 
data. 

III. DATA ACQUISITION 
The parameters of environment, operation and working 

of coal moisture controlling system and the period of coal in 
the rotary kiln are recorded in the field and sample coal is 
taken back to lab. Figure 3 shows the monitoring process.  

 
Fig.3 Testing Points of the System 

720 set of data is recoded at the same time lap by 
workers of 4 round working time in Bao Steel work shop, of 
which 310 set is chosen as training samples. Seen as in 
Table 1. 

TAB. I TRAINING SAMPLES 

output
(ton/h) 

Outlet 
temperature of 
dryer 
(centigrade) 

Inlet coal 
moisture 
(%RH) 

Steam flow 
rate 
(kg/h) 

247.9291 74.9978 12.1207 11088 
251.2817 70.5444 12.0825 10939 
247.2381 81.2406 12.1175 11043 
249.4915 76.2792 12.0942 10948 
243.3044 81.7253 12.2356 11510 
252.8835 77.3085 12.0127 10829 
247.4501 81.5356 12.1405 11146 
247.0261 81.6410 12.1640 11234 
249.7035 81.5356 12.1405 11768 
248.5415 81.5778 12.1399 11142 
245.2909 81.5988 12.2353 11502 
244.1760 79.8083 12.2839 11888 
248.0547 81.0720 12.1752 11262 
… … … … 

IV. PARAMETERS IDENTIFICATION AND OPTIMIZATION 
Bacteria Foraging Optimization (BFO) is adopted for 

parameters identification and optimization of the model. First 
proposed by Passino in 2002, BFO is a newly developed 
nature-inspired algorism based on the foraging movement of 
E coli with the advantages of low sensitivity to initial value 
and parameters, good robustness, ease to realize and parallel 
nature and overall searching. 

A. BFO Algorism 
Four principal mechanisms are usually included in a BFO: 

chemotaxis, swarming, reproduction and elimination-
dispersal. 
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Let us define the movement of coli by the following: 
Let j  be the index for the chemotactic step, k  be the 

index for the reproduction step, l  be the index of the 
elimination-dispersal event, Also let： 

P : Dimension of the search space,  
S : Total number of bacteria in the population, 

cN : The number of chemotactic steps,  

sN : The swimming length, 

reN : The number of reproduction steps, 

edN : The number of elimination-dispersal events, 

edP : Elimination-dispersal probability, 
C(i) : The size of the step taken in the random direction 

specified by the tumble. 
• Chemo taxis: Then in computational chemo taxis the 

movement of the bacterium i may be represented by:  
• ( )i i ( )( , , )1, ( )

( )
,

( )T

ij k l C i
i i

j k lθ θ Δ
+

Δ Δ
+ =        (1) 

• where Δ  indicates a vector in the random direction.  
• Swarming: The cell-to-cell signaling in E. coli 

swarm may be represented by the following function. 
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where tanattrac td is the depth of attractant， tanattrac tw is 

the width of attractant, repellanth is the height of repellant, 

repellantw is the width of repellant, iθ is the m th field of 

bacteria i , mθ is the m th field of other bacterium in the 
population. 

• Reproduction: the function is as follows:  

                                
1

1
( , , , )

Nc
i
health

j
J J i j k l

+

=

= ∑              (3) 

 where for the given k , l and 1, 2,...i S= , let i
healthJ  be 

the health of the bacterium (a measure of how many nutrients 
it got over its lifetime and how successful it was at avoiding 
noxious substances). Sort bacteria and chemotactic 
parameters ( )C i in order of ascending cost i

healthJ , and 

higher cost means lower health. / 2rS S= with the lowest 
i
healthJ value die, and the remaining rS bacteria with the best 

values split by the copies that are made are placed at the 
same location as their parent. 

• Swarming: The cell-to-cell signaling in E. coli 
swarm may be represented by the following function.           
Step1：Initialize parameters 

, , , , , , , ( )( 1,2,.., ), i
c s re ed edp S N N N N P C i i S θ=  

Step2：Elimination-dispersal loop: 1l l= +  
Step3：Reproduction loop: 1k k= +  
Step4：Chemotaxis loop: 1j j= +  
① For 1,2,...i S= take a chemotactic step for 

bacterium i . 
② Compute fitness function ( , , , )J i j k l ，let 

 ( , , , ) ( , , , ) ( ( , , ), ( , , ))i
ccJ i j k l J i j k l J j k l P j k lθ= +          (4) 

(i.e. add on the cell-to cell attractant–repellant profile to 
simulate the swarming behavior) 

③ Let to save this value since we may find a better cost 
via a run. 

( , , , )lastJ J i j k l=                        (5) 
④ Tumble: generate a random vector 

( ) PiΔ ∈ℜ with each element ( )m iΔ , ( 1, 2,...m p= ) 
a random number on [-1,1]. 

⑤  Move: Let 

( )i i ( )( , , )1, ( )
( )

,
( )T

ij k l C i
i i

j k lθ θ Δ
+

Δ Δ
+ =      (6) 

This results in a step in the direction of the tumble for 
bacterium i . 

⑥  Compute ( , 1, , )J i j k l+  and let 
( , 1, , ) ( , , , )

( ( 1, , ), ( 1, , ))θ

+ =

+ + +i
cc

J i j k l J i j k l
J j k l P j k l

              (7) 

⑦ Swim: 
Let 0m = , then sm N<  

Let m m l= + , if ( , 1, , ) lastJ i j k l J+ <  

Let ( , 1, , )lastJ J i j k l= + ，then  

( )i i ( )( , , )1, ( )
( )

,
( )T

ij k l C i
i i

j k lθ θ Δ
+

Δ Δ
+ =             (8) 

go back to Step 6, and recalculate ( , 1, , )J i j k l+ with 

( )i 1, ,j k lθ + , otherwise, let sm N=  

⑧ Go back to Step 2 and go to next bacteria 1i +  
Step5 ： if cj N< , go back to Step4. In this case 

continue chemotaxis since the life of the bacteria is not over. 
Step6 ： Reproduction: for the given k , l and 
1,2,...i S= , let i

healthJ  be the health of the bacterium (a 
measure of how many nutrients it got over its lifetime and 
how successful it was at avoiding noxious substances). Sort 
bacteria and chemotactic parameters ( )C i in order of 

ascending cost i
healthJ , and higher cost means lower health. 

/ 2rS S=  with the lowest i
healthJ value die, and the 

remaining rS bacteria with the best values split by the copies 
that are made are placed at the same location as their parent. 
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Step7：If k Nre< , to back to Step3。 
Step8：Elimination-dispersal: For i = 2,1 ..., S with 

probability edP , eliminate and disperse each bacterium (this 
keeps the number of bacteria in the population constant). To 
do this, if a bacterium is eliminated, simply disperse another 
one to a random location on the optimization domain. If 
l Ned< ,  then go to Step 2; otherwise end. 

B. Adaptive BFO Algorism [4] [5] 
In the initial period of searching optimum, large step 

helps to avoid local optima and find the area where optima is 
while in the half period, small step helps to improve 
accuracy. 

Evaluate fitness to the step in chemotaxis to adjust step 
which each bacteria takes. 

Step1: Evaluate fitness 

max min
max

( )*iJV X X rand
J

= −                 (9) 

where V is fitness, maxX 、 minX are the boundaries of 

variables and J is fitness. 
Step2: Tumble: generate a random direction unit ( )iΔ  

to optimize steps according to the following function: 

     
( )i i ( )( , , )1, ( )

( )
,

( )T

ij k l C i
i i

j k lθ θ Δ
+

Δ Δ
+ =

          (10) 
to update the location and its corresponding fitness of 

each bacteria. 
Step3: Swim: optimized by the following function: 

( ) ( )*C i C i V=                       (11) 
Step4: Linear gradient fitness is represented by the 

following fuction: 
max min

max

*step stepV V
step

−
=               (12) 

C. Identification and Optimization 
To improve the prediction effect of the model, BFO with 

step of 0.1 and 0.5, adaptive BFO algorism are used to 
optimize RBF network and the following are the procedures:  

Step1: Train weight of each unit by RBF algorism;  
Step 2: Calculate J=MSE of each network as its fitness; 
Step 3: Search optima of fitness J by 5 algorisms to find 

the minimum value of which the corresponding weight is the 
optima of the network. As seen in Figure 4. 

 
Fig. 4 BFO Optimized RBF Parameters 

As shown in Figure 4, when optimized by BFO, the 
convergence rate of parameters in RBF is 0.5 BFO, ABFO, 
0.1 BFO, of which 0.5 BFO is faster. 

For the parameters with high dimensions (the RBF 
network has 40 dimensions), 0.1 BFO leads to local optima. 

D. Model Checking 
From 720 sets data, 310 are chosen in the prediction 

model. 

TAB. II SAMPLES CHECKING 

output 
(ton/h) 

Outlet 
temperature of 
dryer 
(centigrade) 

Inlet coal 
moisture 
(%RH) 

Steam flow 
rate 
(kg/h) 

249.7035 77.0774 12.0613 10900 
250.6064 71.4266 12.0960 10977 
299.3966 82.9053 10.9383 9702 
248.1332 81.3881 12.0948 10963 
253.0326 81.7253 11.9765 10777 
250.9363 73.5483 12.0954 10969 
257.5866 81.3881 11.8725 10729 
245.5814 81.3038 12.1985 11360 
251.5879 74.0945 12.0960 10977 
250.4573 75.3969 12.1302 11122 
246.6650 81.1774 12.1991 11367 
250.8892 81.6831 12.0831 10940 
248.5415 81.1353 12.1558 10612.52 
… … … … 

 
Fig.5 Prediction Difference of RBF without Optimization 
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Fig. 6 Prediction Difference of Step 0.1 BFO Optimized RBF Network 

 
Fig.7 Prediction Difference of ABFO Optimized RBF Network 

 
Fig.8 Prediction Difference of Step 0.5 BFO Optimized RBF Network 

As Figure 5 to 8 show that the difference of RBF 
network without optimization reaches as high as 18% with 
small difference in only limited areas, which leads to large 
difference in overall control. The accuracy of 0.5 BFO is 
high than that of 0.1 BFO ( 0.1 BFO leads to local optima), 
of which the difference remains within 10% and 13% 
respectively. The difference of ABFO remains within 11%, 
falling in between of above. 

 

Fig. 9 Difference between Real Value and RBF Prediction Output 

 

Fig.10 Difference between Real Value and Step 0.1 BFO * RBF Output  

 

Fig.11 Difference between Real Value and ABFO* RBF Output 
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Fig.12 Difference between Real Value and Step 0.5 BFO * RBF Output 

Figure 9 to 12 show the difference between real steam 
flow rate and prediction output of RBF network based on 
310 sets data, of which the real steam flow rate is within the 
range of from 8000kg/h to 20000kg/h. 

Compared with real steam flow rate, the predicted output 
of RBF network without optimization fluctuates at as much 
as 4000kg/h and 0.1 BFO optimized RBF fluctuates at 
2300kg/h, adaptive BFO at 2250kg/h and 0.5 BFO one at 
2200kg/h. 

From above, the RBF network optimized by BFO with 
0.5 step yields the best result, adaptive BFO falls in between 
0.1 BFO and 0.5 BFO. 

V. CONCLUSION 
(1) A nature-inspired BFO modeling and optimization of 

coal moisture controlling system is studied and provided by 
analyzing its process and existed models. 

(2) When optimizing RBF network by BFO, the 
convergence rate of BFO with 0.5 step is fastest and 
followed by ABFO and BFO with 0.1 step. 

(3) When identifying RBF network by BFO, the 
accuracy is 0.5 BFO, ABFO and 0.1 BFO in sequence, with 
0.5 BFO being the highest. 

(4) BFO usually leads to local optima to RBF network 
with high dimensions (the RBF network has 40 dimensions). 
In the study, RBF network optimized by 0.1 BFO falls in 
local optima, of which the accuracy is lower than that of 0.5 
step BFO. 
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