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Much research has been conducted on anomaly detection by wireless sensor networks (WSNs).  The existing WSNs 

require specialized knowledge and skills to install the sensors in environments such as houses and buildings. Therefore, 

we have developed a flexible WSN based on small sensor devices that can be easily installed.  The users only need to 

place these sensors at the locations where they want to sense and to provide some information to the server through a 

web page.  Then, these small sensor devices automatically create wireless networks, start communicating with the 

central server for logging continuous data, and show anomalies by using inference based on a basic Bayesian Network. 

However, a serious problem is that a large amount of noise data prevents correct inferences. Therefore, in this paper, 

we propose a method for reducing noise data based on location sampling of real human movements. Our experimental 

results show that our method is effective in increasing the inference accuracy for detecting anomaly data. 
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1. Introduction 

In recent years, the fastest-growing information terminal 
devices are represented by the smartphone. Due to the 
dramatic progress made in compact communication 
modules and various sensors, smart phones are now sold at 
prices that make typical consumers feel free to buy them.  
In addition, a great deal of research has been conducted on 
anomaly detection by wireless sensor networks (WSNs).   
The existing WSNs require specialized knowledge and 
skills to install sensors in environments such as houses and 
buildings. This technology has also created services that 
allow users to view and share sensing data acquired by the 
sensor network, which may be installed around the world.  
Such services might include, for example, detection of sea 

surface temperature and the status of tidal flows.  Various 
sensing products are being steadily developed and 
implemented in systems to care for the health of senior 
citizens.  However, these products are usually expensive, 
and their installation by the user is very difficult. In this 
research, we developed a wireless sensor network system 
that offers easy installation and easy operation [1]. Our 
preliminary experiments demonstrate that our system can 
find anomalous sensing information without any difficult 
installation procedures.  Consequently, these small sensor 
devices can automatically create wireless networks, start 
communicating with the central server for logging 
continuous data, and show anomalies by using inference 
based on a basic Bayesian Network. A problem arises 
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when much noise data prevent correct inferences. 
Therefore, in this paper, we propose a method for reducing 
noise data based on location sampling of real human 
movements. Our experimental results show that our 
method is effective for raising the accuracy of inference in 
detecting anomaly data.   The rest of the paper is organized 
as follows. Section 2 introduces previous studies and the 
relative position of our research.  Section 3 presents 
configuration of test demonstration and knowledge. 
Section 4 describes the configuration of our test 
demonstration. Section 5 presents an anomaly detection 
method using support vector machine (SVM). Section 6 
proposes a noise-reduction method using a Bayesian 
network.  Section 7 outlines our experimental evaluations. 
Finally, Section 8 summarizes our paper and describes 
future work. 

2. Related Works 
 

2.1. General product features 

Anomaly detection systems have been used widely in the 
security field. A representative application is a system for 
detecting an intruder.  These systems [2][3] can alert a 
security company after detecting the intruder, using motion 
sensors and lead switches on window doors or entrance 
doors. 
 One system [4] simply notifies senior citizens two 
times a day when it is time for them to drink a cup of tea. 
Other systems [5][6] can analyze behavior patterns using 
motion sensors and send emergency reports. Another 
group of systems [7][8][9] applies RFID units and sensors 
to analyze behavior patterns in order to send notifications 
of abnormal events as a whistle-blower system.  Yet 
another approach is based on systems [10][11][12][13] 
using wearable sensors that can monitor temperature with 
thermometers. 
 Video cameras have been used in some systems 
[14][15][16] for detecting abnormal behavior. 
 The above works raise a variety of problems: 
 
• Generally they are expensive to install. 
• They require separate communication cables. 
• Their video cameras are viewed as too invasive of 

one’s privacy. 

• Wearable sensors increase the cognitive burden on 
users. 

• They require huge computational power to process 
videos. 

• Their main purpose is to alert rather than to watch/see. 
• The visibility of their activity logs is not sophisticated. 

 
2.2. Research on anomaly detection 
Anomaly detection refers to the problem of finding 
patterns in data that do not conform to expected behavior 
[17]. These nonconforming patterns Flexible WSNs aims 
easy installation with noise reduce method for elderly 
people care are often referred to as anomalies, outliers, 
discordant observations, exceptions, aberrations, surprises, 
peculiarities or contaminants in different application 
domains [18]. Of these, anomalies and outliers are the two 
terms used most commonly, sometimes interchangeably, in 
the context of anomaly detection.   Anomaly detection 
finds extensive use in a wide variety of applications such 
as fraud detection for credit cards, insurance or health care, 
intrusion detection for cyber-security, fault detection in 
safety- critical systems, and military surveillance of enemy 
activities. Anomaly detection is important because 
anomalies in data translate to significant and often critical 
actionable information in a wide variety of application 
domains. For example, an anomalous traffic pattern in a 
computer network could mean that a hacked computer is 
sending out sensitive data to an unauthorized destination 
[19]. An anomalous MRI image may indicate the presence 
of malignant tumors [20]. Anomalous readings from a 
spacecraft sensor could signify a fault in some component 
of the spacecraft [21]. Over time, a variety of anomaly 
detection techniques have been developed in several 
research communities. Many of these techniques have 
been specifically developed for certain application 
domains, while others are more generic. 
 In addition, the importance of data analysis has been 
increasing in the field of wireless sensor networks [22] 
[23]. Sensor data collected from various wireless sensors 
have special features. 
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5. Anomaly Detection using SVM 
 
Defining Anomalies 
 
An important aspect of any anomaly detection technique is 
the nature of the anomaly under focus. Anomalies can be 
classified into three main categories[17]. First, if an 
individual data instance can be considered anomalous with 
respect to the rest of the data, then this instance is termed a 
point anomaly. This is the simplest type of anomaly, and it 
is the focus of a majority of the research on anomaly 
detection. Second, Contextual Anomalies exist when a data 
instance is anomalous in a specific context. The notion of 
context is determined by the structure of the dataset, and 
this has to be specified as a part of the problem 
formulation. Each data instance is defined using 
Contextual attributes and Behavioral attributes. The 
choice of applying a contextual anomaly detection 
technique is determined by the meaningfulness of the 
contextual anomalies in the target application domain. The 
third technique is based on Collective Anomalies. In this 
technique, a collection of related data instances is 
anomalous with respect to the entire data set. The 
individual data instances in a collective anomaly may not 
be anomalies in themselves, but their occurrence together 
in a collection is anomalous.  

In this research we perform anomaly detection using a 
contextual anomaly technique that is common to the 
domain of elderly care and anomaly detection in a 
laboratory. This allows us to detect unusual activities in 
different times of a life. We evaluate anomaly detection 
techniques using real data obtained with a prototype sensor 
network, and the obtained sensing data are shown in Table 
1. 

Table 1: Example of actual sensing data 
 

Device ID Voltage Sensing Time 
40981d4f 3.8 2012-08-20 15:49:17 +0900 
40981d4f 3.8 2012-08-20 15:49:31 +0900 
40981d4f 3.8 2012-08-20 15:49:32 +0900 
40981d4f 3.8 2012-08-20 15:49:36 +0900 
40981d4f 3.8 2012-08-20 15:49:38 +0900 
40981d4f 3.8 2012-08-20 15:49:45 +0900 
40981d4f 3.8 2012-08-20 15:49:46 +0900 
40981d4f 3.8 2012-08-20 15:49:47 +0900 

 
Transforming data to SVM format 
 
Support Vector Machines (SVMs) provide a useful 
technique for data classification. Although SVM is 
considered easier to use than Neural Networks, users not 
familiar with it often get unsatisfactory results at first[24]. 
SVM requires that each data instance be represented as a 
vector of real numbers. Hence, if there are categorical 
attributes, we first have to convert them into numeric data. 
Therefore, we converted the dataset as follows: 
 
• Data label 
• Hour of sensing data 
• Minute of sensing data 
• Second of sensing data 
 

We converted each line in the above datasets, and did 
this, furthermore, at the time of the experiment. In 
addition, in the experiment performed on the training data, 
the training data were labeled ”+1” if a positive example 
and ”-1” if a negative example. Consequently, SVM 
recognized class as abnormal and normal classes. 
 
Parameter Tuning for SVM 
 
SVM is a useful technique for data classification, with 
successful applications in different fields such as 
bioinformatics, image segmentation, and data mining. A 
key problem with these methods is how to choose the 
optimal kernel and how to optimize its parameters in the 
learning process of SVM[25]. 
The objective of this study is to propose a genetic 
algorithm approach for parameter optimization to solve 
this problem. Using a grid search algorithm is a common 
technique for SVM parameter setting. However, this 
method suffers from various limitations such as being 
time-consuming and not performing well. 
 
Dealing with imbalanced data 
 
SVM has been extensively studied, and it has shown 
remarkable success in many applications. However, the 
success of SVM is very limited when it is applied to the 
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Table 6: Evaluation of each kernel function before noise 
reduction 
 
Kernel Accuracy rate Precision rate Recall rate F-measure 
Linear 0.983 0.983 0.984 0.983 
Polynomial 0.991 0.998 0.984 0.991 
RBF 0.992 0.993 0.992 0.992 
Sigmoid 0.979 0.979 0.98 0.979 

 
Table 7 shows the accuracy rate of the abnormal-class 

anomaly detection method by using data that have been 
subjected to noise reduction, compliance rate, recall rate, 
and F-measure. 
 
Table 7: Evaluation of each kernel function after noise 
reduction 
 
Kernel Accuracy rate Precision rate Recall rate F-measure 
Linear 0.987 0.983 0.991 0.987 
Polynomial 0.994 0.997 0.991 0.994 
RBF 0.99 0.989 0.991 0.99 
Sigmoid 0.984 0.978 0.99 0.984 

 
Table 6 shows the evaluation results obtained before noise 
reduction and Table 7 shows those obtained after noise 
reduction. 

As a result of noise removal, the kernel of prediction 
accuracy has been improved, aside from the RBF kernel. 
Prediction accuracy is also improved by noise removal, 
from these results. In addition, accuracy is worse for a 
learning model using the RBF kernel results from noise 
removal. This is because during noise removal, some 
accidentally erased data involved the support vector 
classification boundaries used for creating a high degree of 
accuracy. In order to prevent the erasure of data in the 
future, noise refinement will be increased from column to 
column, with two or three sensors of the random variable 
node result of the Bayesian network used when reducing 
noise. Moreover, to improve the accuracy of estimation, 
noise caused by making the node multi-level needs to be 
further reduced. 

From the results of experiments carried out in this 
paper, we were able to evaluate anomaly detection 
methods by analyzing the sensor data using SVM. In this 
paper, data analysis applying the SMOTE abnormality-
detection algorithm obtained better results in comparison 
with other kernel functions. In addition, prediction 
accuracy is improved by identifying the sequence of sensor 

data that is estimated to be noise caused by the Bayesian 
network used to remove them. Our results showed that the 
proposed method is effective for noise removal. 

 
8. Summary 
 
In this paper, we proposed a method that could easily 
perform anomaly detection of a sensor network. We 
showed that the ”abnormal activity in the context of a 
different time zone from the normal” could be detected by 
the proposed method. Next, we identified by experiment 
the sequence of datasets of sensor data that are estimated 
to be noise by the Bayesian network constructed, except 
for the sensor data before noise reduction. In evaluating 
classification using the port, the polynominal kernel was 
found to obtain the optimal result. This shows 
improvement in prediction accuracy by eliminating noise 
from the result. Further refinement can be achieved by 
increasing the sensor column by three sensors with two 
random variables of the node in future results of the 
Bayesian network. Furthermore, by using a multi-stage 
node to improve the accuracy of estimation noise, an even 
greater amount of noise can be removed. 
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