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Abstract

Bayesian network (BN), a simple graphical notation for conditional independence assertions, is promised
to represent the probabilistic relationships between diseases and symptoms. Learning the structure of
a Bayesian network classifier (BNC) encodes conditional independence assumption between attributes,
which may deteriorate the classification performance. One major approach to mitigate the BNC’s pri-
mary weakness (the attributes independence assumption) is the locally weighted approach. And this type
of approach has been proved to achieve good performance for naive Bayes, a BNC with simple struc-
ture. However, we do not know whether or how effective it works for improving the performance of
the complex BNC. In this paper, we first do a survey on the complex structure models for BNCs and
their improvements, then carry out a systematically experimental analysis to investigate the effective-
ness of locally weighted method for complex BNCs, e.g., tree-augmented naive Bayes (TAN), averaged
one-dependence estimators AODE and hidden naive Bayes (HNB), measured by classification accuracy
(ACC) and the area under the ROC curve ranking (AUC). Experiments and comparisons on 36 benchmark
data sets collected from University of California, Irvine (UCI) in Weka system demonstrate that locally
weighting technologies just slightly outperforms unweighted complex BNCs on ACC and AUC. In other
words, although locally weighting could significantly improve the performance of NB (a BNC with sim-
ple structure), it could not work well on BNCs with complex structures. This is because the performance
improvements of BNCs are attributed to their structures not the locally weighting.
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1. Introduction

Bayesian network (BN), which can be regarded as

an annotated directed graph that encodes the prob-

abilistic relationships among variables of interest 7,

is a popular data mining technique used to predict

the class of a test instance in classification. Each

node corresponds to a variable, and the conditional

probability table (CPT) associated with it contains

the probability of each state of the variable given

every possible combination of states of its parents.

Moreover, each node is conditionally independent

of its non-descendants given its parents. And the

BN structure can be exploited by the explicit repre-

sentation of probabilistic relations in BN for a given

problem domain. In this way, it makes incorpo-

rating domain knowledge in the BN model design

easier. In addition, the intuitive graphical represen-
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tation of BN is very beneficial in decomposing a

large and complex problem representation into sev-

eral smaller, self-contained models.

The BN has been applied in many application ar-

eas including computational molecular biology 20,

computer vision 21, relational databases 19, text pro-

cessing 11, image processing 46 and sensor fusion
5. In the BN classification problem, a Bayesian net-

work classifier (BNC) from a given set of labeled

training instances that are represented by a tuple

of attribute variables should be constructed in or-

der to predict the distribution of the class variable.

Learning BNC has become an active research in

the past decade. The two issues of learning BNC

are the structure of the network (structure learning)

and the set of CPTs (parameter learning). Struc-

ture learning often has high computational complex-

ity due to the extremely huge number of possible

structures. Thus, heuristic and approximate learn-

ing algorithms are the realistic solution. A vari-

ety of learning algorithms have been proposed 26.

Moreover, it has been observed that learning an un-

restricted Bayesian network classifier seems to not

necessarily lead to a classifier with good perfor-

mance. For example, Friedman et al. 4 observed

that unrestricted Bayesian network classifiers do not

outperform naive Bayes, the simplest Bayesian net-

work classifier, on a large sample of benchmark data

sets. One major reason is that the resulting network

tends to have a complex structure, and thus has high

variance because of the inaccurate probability es-

timation caused by the limited amount of training

examples. So, learning restricted Bayesian network

classifiers is a more realistic solution.

In this paper, we assume that the Ai, i =
1,2, · · · ,n, are n attributes. Each instance can

be described by the tuple of attribute values <
a1,a2, · · · ,an >, where an denotes the value of the

nth attribute An. The most probable target value is

described as νMAP, while C is a finite set building

on every target value c j. The Bayesian approach for

classification is to assign the most probable target

value of the test instance. Typically, one set of train-

ing instances with class labels are given, a classifier

must be learned to predict the class distribution of an

instance with its class label unknown. The classifier

represented by Bayesian approach can be defined as:

cMAP = argmax
c j∈C

P(c j)P(a1,a2, · · · ,an
∣∣c j) (1)

Assume that all the attributes satisfy the attribute

independence assumption, and then the probability

of observing the conjunction is just the product of

the probabilities for the individual attributes. This

is the core concept of naive Bayes, simply NB, as

one highly practical Bayesian networks method, as

shown in Figure 1. It is easy to estimate p(c j), oppo-

site to P(a1,a2, · · · ,an
∣∣c j)

37. Unless the number of

possible instances in training data is very large, we

can not obtain reliable estimates. The corresponding

details can be defined as:

cNB = argmax
c j∈C

P(c j)
n

∏
i=1

P(ai
∣∣c j) (2)

Fig. 1. The structure of Naive Bayes (NB).

In NB, each node has a class node as its parent,

and it does not have any other parent from other at-

tribute nodes. Constructing naive Bayes network is

easy because it only needs to compile a table of class

probability estimation p(c j) and a table of condi-

tional attribute-value probability estimates P(ai
∣∣c j)

from the training examples.

However, the attribute independence assumption

made by naive Bayes harms its classification per-

formance when it is violated in reality. In order to

weak the attribute independence assumption of NB

while at the same time retaining its simplicity and

efficiency, researchers have proposed many effec-

tive methods to further improve the performance of

NB, which can be broadly divided into the follow-

ing five main categories 13: (1) Structure Extension:
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Extending the structure of naive Bayes to represent

the dependencies among attributes; (2) Feature Se-
lection: Selecting an attribute subset from the whole

space of attributes; (3) Attribute Weighting: Assign-

ing different weights to attributes in building naive

Bayes; (4) Local Learning: Employing the principle

of local learning to build a local naive Bayes; and (5)

Data Expansion: Expanding training data and build-

ing a naive Bayes on the expanded training data. It is

worth noticing that the attribute weighting 40 meth-

odizing for naive Bayes has demonstrated good per-

formance 36,33,42,31.

Specifically, for the structure extension, three

methods have been demonstrated to improve the

NB to a remarkably accurate level. Selective Naive

Bayes (SBC) 16 demonstrates a remarkable im-

provement by using the selected subset of vari-

ables. Tree Augmented Naive Bayes (TAN) 4 ap-

pears as a natural extension to the naive Bayes

classifier. And a Naive Bayes/Decision-Tree Hy-

brid (NBTree) 15 has combined a decision tree with

naive Bayes. But recently major work on improv-

ing NB is called Averaged One-Dependence Esti-

mators, simply AODE 29, achieving significant suc-

cess. In AODE, an aggregate of one-dependence

classifiers is learned and the prediction is produced

by averaging the predictions of all these qualified

one-dependence classifiers. Hidden Naive Bayes

(HNB) 13 is another extension of NB, in which a hid-

den parent is created for each attribute which com-

bines the influences from all other attributes. How-

ever, learning an optimal Bayesian network is a NP-

hard problem 2.

The locally weighted method has been proved

as a effect improvement for naive Bayes due to the

studies in the previous works 10,27,28. However, for

the more complex BNC models, such as TAN 4,

AODE 29 and HNB 13, locally weighted learning is

comparatively less explored. In this case, we could

not make sure how much effect the locally weight-

ing make exactly. Moreover, in recent years, the

area under the ROC curve ranking (AUC) has at-

tracted considerable attention in data mining com-

munity 17, such as decision tress 25, naive Bayes 18

and SVM 8. Hand and Till 6 show that, for binary

classification, AUC is equivalent to the probability

that a randomly chosen instance of class will have a

smaller estimated probability of belonging to posi-

tive class than a randomly chosen instance of posi-

tive class. In this paper, we systematically analyze

the performance of locally weighted complex BNCs

(TAN, AODE and HNB) by using locally weighted

learning method proposed by Frank et al. 3. Experi-

ments and comparisons, on 36 UCI benchmark data

sets 1 demonstrate that the locally weighted tech-

nologies just slightly outperforms unweighted com-

plex BNCs on ACC and AUC, which means that the

locally weighted do not work very well for the com-

plex BNCs.

The rest of the paper is organized as follows. In

Section 2, we introduce the Tree Augmented Naive

Bayes (TAN), one of the improvement versions of

Naive Bayes (NB) on the structure, with the Av-

eraged One-dependence Estimators (AODE) been

summarized in Section 3. We also give the details

of Hidden Naive Bayes (HNB) in Section 4. In Sec-

tion 5, we review the related work on locally weight-

ing methods. In Section 6, we describe the experi-

mental conditions, methods, and results in details.

Section 7 concludes the paper.

2. TAN: Tree Augmented Naive Bayes

Tree Augmented Naive Bayes (TAN) is a semi-

naive Bayesian learning method. It relaxes the naive

Bayes attribute independence assumption by em-

ploying a tree structure, in which each attribute only

depends on the class and one other attribute. A max-

imum weighted spanning tree that maximizes the

likelihood of the training data is used to perform

classification. Moreover, TAN appears as a natu-

ral extension to the NB classifier. TAN model is a

restricted family of Bayesian networks in which the

class variable has no parents and each attribute has

as parents the class variable and at most another at-

tribute. TAN outperforms naive Bayes in terms of

accuracy 4 and still maintains a considerably simple

structure as shown in Figure 2. The corresponding

TAN classifier is defined as follows.
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Fig. 2. The structure of Tree Augmented Naive Bayes

(TAN).

cTAN = argmax
c j∈C

P(c j)
n

∏
i=1

P(ai|pai,c j) (3)

The TAN model has received the widespread at-

tention, due to its excellent performance in data min-

ing in spite of the assumption of one-dependence of

attributes. For instance, Zhao et. al, 47 proposed

a new approach of classification under the pes-

simistic network (PN) framework with TAN, named

tree augmented naive possibilistic network classifier

(TANPC), which combines the advantages of the PN

and TAN. The classifier is built from a training set

where instances can be expressed by imperfect at-

tributes and classes. It is able to classify new in-

stances those may have imperfect attributes. Jiang 9

posed an improving tree augmented naive Bayes for

class probability estimation, called Averaged Tree

Augmented Naive Bayes (ATAN). The experimen-

tal results on a large number of UCI datasets pub-

lished on the main web site of Weka platform show

that ATAN significantly outperforms TAN and all

the other algorithms used to compare in terms of

conditional log likelihood.

3. AODE: Averaged One-dependence
Estimators

As discussed above, TAN has high computational

complexity at training time. The determinant

of its computational profile lead to the develop-

ment of Averaged One-dependence Estimators, sim-

ply AODE 29. In AODE, an aggregate of one-

dependence classifiers are learned and the predic-

tion is produced by averaging the predictions of all

these qualified one-dependence classifiers, as shown

in Figure 3. For simplicity, a one-dependence clas-

sifier is firstly built for each attribute, in which the

attribute is set to be the parent of all other attributes.

Then, AODE directly averages the aggregate con-

sisting of many special tree augmented naive Bayes.

In addition to having good performance, AODE re-

tains the simplicity and direct theoretical founda-

tion of naive Bayes without incurring the high time.

The corresponding AODE classifier is defined as fol-

lows:

cAODE = argmax
c j∈C

(
n

∑
i=1

P
(
ai,ci

) n

∏
j=1

P
(
a j|ai,c j

))

(4)

In recent years, Jiang had made a lot of re-

lated research on AODE. One significant part of re-

search about improving AODE algorithm by Jiang
12 was Weightily Averaged One-Dependence Esti-

mators, simply WAODE. Wu 35 proposed an active

AODE learning classification model, which is based

on the uncertainty sampling and classification accu-

racy loss sampling strategy. Experimental results on

three UCI standard data sets and a real remote sens-

ing data set show that the active AODE can get better

classification accuracy with fewer labelled samples

than that of the state-of-the-art approaches for ac-

tive learning. Recently, he also investigated a novel

approach to ensemble the single SPODE based on

the boosting strategy, boosting for superparent-one-

dependence estimators, namely BODE 32.

4. HNB: Hidden Naive Bayes

As discussed in previous sections, naive Bayes ig-

nores attribute dependencies. On the other hand, al-

though a Bayesian network can represent arbitrary

attribute dependencies, it is intractable to learn it

from data 43. Thus, learning restricted structures,

such as TAN, is more practical. However, only one

parent is allowed for each attribute in TAN, even

though several attributes might have the similar in-

fluence on it. The motivation is to develop a new

model that can avoid the intractable computational
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Figure 3: The structure of Averaged One-Dependence Estimators (AODE).

complexity for learning an optimal Bayesian net-

work and still take the influences from all attributes

into account. The idea is to create a hidden parent

for each attribute, which combines the influences

from all other attributes. This model is called hid-

den naive Bayes (HNB), as shown in Figure 4. It

represents an approximation of the joint distribution

defined as follows.

Fig. 4. The structure of Hidden Naive Bayes (HNB).

cHNB = argmax
c j∈C

P(c j)
n

∏
j=1

P(ai
∣∣Ahi,c j) (5)

where

P(ai|Ahi,c j) =
n

∑
j=1, j �=i

wi, jP(ai|a j,c j) (6)

where wi, j is the conditional weight contributed by

attribute Ai and A j, which can be defined as follows:

wi, j =
Ip(Ai;A j|C)

∑n
j=1 Ip(Ai;A j|C)

(7)

where Ip(Ai;A j|C) is the conditional mutual infor-

mation between Ai and A j given C, which could be

defined as

Ip(Ai;A j|C)= ∑
ai,a j,c j

P(ai,a j,c j)log
P(ai,a j|c j)

P(ai|c j)P(a j|c j)

(8)

In HNB, attribute dependencies are actually repre-

sented by hidden parents of attributes. It can be
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viewed in such a way that a hidden parent Ahi is cre-

ated for each attribute Ai. HNB should be an accu-

rate model due to the fact that it can represent the

influences on each attribute from all other attributes

and assign higher weights to more importance at-

tributes.

5. LW: Locally Weighting

The basic idea of the locally weighting approach is

building a Bayesian network model on the neigh-

bourhood of the test instance, instead of on the

whole training data 3. Local learning helps to miti-

gate the effects of attribute dependencies that may

exist in the data as a whole and we expect this

method to do well if there are no strong dependen-

cies within the neighbourhood of the test instance.

The local learning approach is actually a kind of

training data selection approach 10, namely the se-

lected training instances are dropped into the neigh-

bourhood of the test instance. As naive Bayes re-

quires relatively little data for training, the neigh-

bourhood can be kept small, thereby reducing the

chance of encountering strong dependencies. There-

fore, although the attribute conditional indepen-

dence assumption of naive Bayes is always violated

on the whole training data, it could be expected that

the dependencies within the neighbourhood of the

test instance is much weaker than that on the whole

training data and thus the conditional independence

assumptions required for naive Bayes are likely to

be true 14.

6. Experiments

6.1. Experimental Settings

In this section, we run our experiments under the

framework of Weka 30 using 36 UCI data sets 1 to

validate the effectiveness of the complex Bayesian

networks (TAN, AODE and HNB) with locally

weighting. These data sets in format of arff are

downloaded from the official website of Weka,

which represent a wide range of domains and data

characteristics and are described in Table 1. The

data among the data sets is preprocessed as the fol-

lowing four steps 44,34.

1. Replacingmissingattributevalues. We use the un-

supervised filter named ReplaceMissingValues to

replace all missing values with the modes and

means from the training data.

2. Discretizingnumericattributevalues. Numeric at-

tributes are discretized by the filter of Discretize
in Weka using unsupervised 10-bin discretization.

3. Removinguselessattributes. Apparently, if the

number of values of an attribute is almost equal to

the number of examples in a data set, it rarely con-

tributes to classification. Thus, we use the unsu-

pervised filter named Remove in Weka to remove

this type of attribute. In these 36 data sets, there

are only three such attributes: the attribute “Hos-

pital Number” in the data set “colic.ORIG”, the

attribute “instance name” in the data set “splice”,

and the attribute ”animal” in the data set “zoo”.

4. Samplinglargedatasets. For saving the time of

running experiments, we use the unsupervised fil-

ter named Resample with the size of 20 percent

in Weka to randomly sample each large data set

having more than 5,000 examples. In these 36

data sets, there are three such data sets: “letter”,

“mushroom” and “waveform-5,000”.

Moreover, all experiments are conducted on

a Linux cluster node with an Interl(R) Xeon(R)

@3.33GHZ CPU and 3GB fixed memory size.

6.2. Evaluation Criterions

In our experiment, the selected algorithms are evalu-

ated in terms of classification accuracy measured by

ACC and ranking performance measured by AUC.

The ACC of each method is calculated by the per-

centage of successful predictions on the text data

sets. ACC criterion has been successful used on

many specific problems 24,22,23,41,39. Nevertheless,

in some data mining real world application, learning

a classifier with accurate ranking or probability esti-

mation is also desirable, not just only classification

accuracy 45,38. For example, in direct marketing,

we often need to promote the top x% of customers

during gradual roll-out, or we often deploy differ-

ent promotion strategies to customers with differ-

ent likelihood of buying some products. To accom-

plish these learning tasks, a ranking of customers in
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Table 1: Detailed information of experimental data

Dataset Instances Attributes Classes Missing Numeric

anneal 898 39 6 Y Y

anneal.ORIG 898 39 6 Y Y

audiology 226 70 24 Y N

autos 205 26 7 Y Y

balance-scale 625 5 3 N Y

breast-cancer 286 10 2 Y N

breast-w 699 10 2 Y N

colic 368 23 2 Y Y

colic.ORIG 368 28 2 Y Y

credit-a 690 16 2 Y Y

credit-g 1000 21 2 N Y

diabetes 768 9 2 N Y

Glass 214 10 7 N Y

heart-c 303 14 5 Y Y

heart-h 294 14 5 Y Y

heart-statlog 270 14 2 N Y

hepatitis 155 20 2 Y Y

hypothyroid 3772 30 4 Y Y

ionosphere 351 35 2 N Y

iris 150 5 3 N Y

kr-vs-kp 3196 37 2 N N

labor 57 17 2 Y Y

letter 20000 17 26 N Y

lymph 148 19 4 N Y

mushroom 8124 23 2 Y N

primary-tumor 339 18 21 Y N

segment 2310 20 7 N Y

sick 3772 30 2 Y Y

sonar 208 61 2 N Y

soybean 683 36 19 Y N

splice 3190 62 3 N N

vehicle 846 19 4 N Y

vote 435 17 2 Y N

vowel 990 14 11 N Y

waveform-5000 5000 41 3 N Y

zoo 101 18 7 N Y

terms of their likelihood of buying is more useful

than merely a classification of buyer or non-buyer.

In recent years, the AUC has been noticed by ma-

chine learning and data mining community as mea-

sures for ranking of the learned classifiers. And the
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Table 2: The detailed experimental results on classification accuracy (ACC) and standard deviation. TAN: Tree

Augmented Naive Bayes; LWTAN: Locally Weighted TAN; AODE: Averaged One-dependence Estimators;

LWAODE: Locally Weighted AODE; HNB: Hidden Naive Bayes; LWHNB: Locally Weighted HNB.

Data Sets TAN LWTAN AODE LWAODE HNB LWHNB

anneal 96.73±1.75 98.82±0.95 v 96.83±1.66 99.02±0.94 v 98.62±1.14 98.83±1.08

anneal.ORIG 90.49±2.14 91.13±2.51 89.01±3.10 91.44±2.25 v 91.60±2.63 90.58±2.16

audiology 65.35±6.84 78.69±8.03 v 71.66±6.42 77.14±7.44 v 73.15±6.00 71.87±7.12

autos 72.54±9.63 81.61±8.86 v 74.60±10.10 81.31±9.07 v 78.04±9.43 79.91±9.12

balance-scale 86.14±2.97 84.35±3.00 89.78±1.88 84.32±2.94 * 89.65±2.42 83.41±2.80 *

breast-cancer 69.53±7.13 69.98±8.29 72.73±7.01 72.71±7.35 70.23±6.49 71.77±6.78

breast-w 95.45±2.42 95.92±2.43 96.85±1.90 96.34±2.19 96.08±2.46 97.10±1.91

colic 80.11±5.87 77.53±6.65 80.93±6.16 79.60±6.20 81.25±6.27 80.35±6.41

colic.ORIG 67.71±6.08 74.36±6.15 v 75.38±6.41 75.61±6.01 75.50±6.57 75.04±5.93

credit-a 84.10±4.28 80.87±4.53 85.86±3.72 83.22±4.09 * 84.84±4.43 84.45±4.21

credit-g 74.88±3.77 71.71±3.72 76.45±3.88 72.26±3.08 * 76.86±3.64 73.90±2.79 *

diabetes 76.31±4.82 68.68±3.95 * 76.57±4.53 70.40±4.23 * 75.83±4.86 73.63±4.11

glass 58.69±9.03 59.34±8.74 61.73±9.69 60.80±8.71 59.33±8.83 61.40±10.07

heart-c 79.70±8.54 77.17±7.06 82.84±7.03 79.41±7.86 81.43±7.35 78.52±7.96

heart-h 81.27±6.00 80.52±6.55 84.09±6.00 82.52±5.90 80.72±6.00 81.98±6.26

heart-statlog 79.48±5.90 80.70±6.79 83.63±5.32 81.00±6.59 81.74±5.94 78.93±6.33

hepatitis 83.00±9.14 80.99±7.69 85.21±9.36 82.97±8.05 82.71±9.95 83.34±7.25

hypothyroid 93.36±0.58 92.12±0.79 * 93.56±0.61 92.49±0.75 * 93.28±0.52 93.34±0.55

ionosphere 91.34±4.50 91.48±3.69 91.74±4.28 91.65±4.20 93.02±3.98 91.54±4.33

iris 94.27±5.53 92.60±6.35 94.00±5.88 93.27±6.32 93.93±6.00 94.07±6.21

kr-vs-kp 92.88±1.49 96.35±1.06 v 91.03±1.66 97.34±0.76 v 92.35±1.32 98.03±0.70 v

labor 89.00±12.39 90.40±12.23 94.57±9.72 91.53±11.37 90.87±13.15 91.20±12.31

letter 76.97±1.87 79.70±1.81 v 77.64±2.02 82.59±1.57 v 82.31±1.74 84.47±1.64 v

lymph 83.69±9.50 82.10±9.83 85.46±9.32 84.08±9.13 82.93±8.96 84.36±8.44

mushroom 99.88±0.26 99.90±0.23 99.94±0.19 99.91±0.25 99.94±0.19 99.91±0.25

primary-tumor 44.77±6.84 38.52±6.21 * 47.87±6.37 40.23±6.19 * 47.85±6.06 45.51±6.02

segment 93.91±1.59 94.04±1.44 92.92±1.40 94.63±1.43 v 94.72±1.42 95.06±1.30

sick 97.70±0.68 97.73±0.72 97.52±0.72 97.92±0.66 97.78±0.73 98.15±0.64

sonar 75.34±9.60 76.45±9.33 79.91±9.60 81.44±8.47 80.89±8.68 83.49±8.42

soybean 94.98±2.38 91.93±2.94 * 93.31±2.85 92.37±2.72 94.67±2.25 93.46±2.48

splice 94.95±1.18 77.77±2.26 * 96.12±1.00 85.53±1.78 * 96.13±0.99 90.78±1.49 *

vehicle 73.35±3.72 69.99±4.09 * 71.65±3.59 70.58±4.01 73.63±3.86 71.48±3.61

vote 94.43±3.34 92.53±4.02 94.52±3.19 93.72±3.62 94.36±3.20 94.59±3.31

vowel 91.89±2.83 92.72±2.56 89.64±3.06 93.89±2.43 v 92.99±2.49 94.27±2.22

waveform-5000 79.20±3.56 67.71±4.11 * 84.84±3.07 71.40±4.09 * 84.31±3.02 78.09±4.19 *

zoo 96.63±5.84 95.95±5.62 94.66±6.38 97.13±5.15 99.90±1.00 96.74±5.06

v, * : statistically significant improvement or degradation with a 95% confidence level.
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Table 3: The detailed experimental results on AUC ranking and standard deviation. TAN: Tree Augmented

Naive Bayes; LWTAN: Locally Weighted TAN; AODE: Averaged One-dependence Estimators; LWAODE: Lo-

cally Weighted AODE; HNB: Hidden Naive Bayes; LWHNB: Locally Weighted HNB.

Data Sets TAN LWTAN AODE LWAODE HNB LWHNB

anneal 99.17±1.34 97.89±3.92 98.93±1.50 97.21±5.96 99.15±1.37 98.08±3.74

anneal.ORIG 96.73±6.07 94.89±7.33 * 97.29±3.93 94.82±7.26 97.87±3.27 96.18±7.68

audiology 83.59±1.47 83.79±1.58 83.81±1.48 83.61±1.60 84.08±1.48 83.80±1.57

autos 93.84±3.17 95.44±2.82 v 94.67±2.54 95.68±2.40 95.19±2.49 95.50±2.76

balance-scale 80.94±4.73 74.31±3.53 * 79.93±3.94 73.43±3.41 * 87.38±4.21 73.13±3.65 *

breast-cancer 65.36±10.84 64.05±10.64 71.18±10.03 64.15±10.27 * 66.69±10.61 66.53±9.20

breast-w 98.89±0.96 98.82±1.23 99.28±0.73 99.16±0.93 99.02±0.95 99.34±0.73 v

colic 85.58±6.24 84.71±6.97 86.79±6.08 84.53±6.81 86.73±6.09 86.31±6.01

colic.ORIG 72.02±8.41 75.47±8.99 82.22±7.24 76.02±8.87 * 83.70±5.62 78.35±7.79 *

credit-a 90.49±3.01 87.53±4.16 * 92.35±2.92 88.75±4.02 * 91.04±3.58 90.91±3.17

credit-g 77.10±4.88 72.48±4.77 * 79.68±4.14 73.50±4.75 * 79.65±4.42 75.89±4.10 *

diabetes 81.87±5.03 71.51±5.18 * 82.96±4.83 72.15±5.51 * 82.31±4.82 79.19±5.28 *

glass 80.10±5.91 82.85±6.25 83.60±5.64 84.60±5.95 88.37±4.57 86.28±5.41

heart-c 83.80±0.65 83.39±0.75 * 84.11±0.57 83.67±0.68 * 83.94±0.63 83.78±0.65

heart-h 83.71±0.54 83.58±0.75 83.97±0.54 83.69±0.72 83.79±0.59 83.79±0.64

heart-statlog 89.36±4.46 86.06±6.07 91.28±4.70 87.47±5.90 * 89.26±5.22 88.40±5.09

hepatitis 87.15±10.02 80.72±12.34 88.53±10.56 82.33±11.75 * 88.04±9.91 84.54±12.02

hypothyroid 86.67±7.28 79.98±8.77 * 87.34±7.23 80.33±8.87 * 88.77±6.29 84.12±7.94 *

ionosphere 98.05±2.42 96.25±2.92 97.57±2.23 96.90±2.33 98.19±1.95 97.47±2.16

iris 99.07±1.82 98.29±2.38 99.16±1.42 98.09±2.57 98.72±2.20 98.81±1.92

kr-vs-kp 98.26±0.62 99.18±0.45 v 97.44±0.75 99.29±0.41 v 98.21±0.56 99.62±0.32 v

labor 93.75±12.09 95.50±10.18 98.54±4.90 96.75±8.57 97.04±7.52 96.08±9.47

letter 98.10±0.33 97.54±0.47 * 98.40±0.28 98.02±0.45 * 98.89±0.20 98.79±0.27

lymph 93.61±4.58 93.72±4.23 95.03±4.35 93.97±4.30 94.82±4.27 94.63±4.32

mushroom 100.00±0.01 100.00±0.00 100.00±0.01 100.00±0.00 100.00±0.01 100.00±0.00

primary-tumor 84.59±2.32 81.33±3.11 * 85.72±2.07 81.47±2.88 * 85.86±2.12 83.98±2.42 *

segment 99.53±0.20 99.05±0.46 * 99.42±0.22 99.23±0.45 99.71±0.14 99.65±0.18

sick 98.08±1.21 97.61±2.04 97.09±1.69 97.70±2.00 98.24±1.22 98.91±0.86 v

sonar 83.79±8.35 87.12±7.38 90.01±6.77 91.28±6.34 90.15±6.63 91.58±6.37

soybean 99.94±0.08 99.73±0.30 * 99.91±0.09 99.75±0.26 * 99.96±0.05 99.89±0.10 *

splice 99.35±0.35 94.81±1.14 * 99.56±0.25 97.60±0.69 * 99.57±0.24 98.76±0.45 *

vehicle 90.76±2.01 85.79±2.80 * 89.91±2.03 86.93±2.38 * 90.73±2.00 88.81±2.13 *

vote 98.75±1.17 97.93±1.77 98.67±1.24 98.27±1.69 98.76±1.13 98.65±1.35

vowel 99.52±0.31 99.60±0.31 99.40±0.36 99.72±0.26 v 99.70±0.22 99.73±0.23

waveform-5000 92.85±2.12 84.06±3.17 * 96.70±1.27 87.83±2.76 * 96.63±1.31 92.02±2.35 *

zoo 99.01±1.44 99.02±1.48 99.07±1.43 99.07±1.43 99.26±1.11 99.12±1.30

v, * : statistically significant improvement or degradation with a 95% confidence level.
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AUC of the classifier is calculated as follow:

E =
P0 − t0(t0 +1)/2

t0t1
(9)

where t0 and t1 are the numbers of negative and pos-

itive instances, repressively. P0 = ∑ri, with ri de-

noting the rank of ith negative instance in the ranked

list. It is clear that AUC is essentially a measure of

the quality of ranking. Unfortunately, this can only

deal with two-level classes problem. For multiple

classes, Hand and Till 6 propose an improved AUC

calculating measure:

E ′ =
2

g(g−1) ∑
i< j<L

E(ci,c j) (10)

where g is the number of classes and E(ci,c j) is the

AUC of each pair of classes ci and c j.

6.3. Analysis of Locally Weighted BNCs

We empirically investigated three Bayesian network

classifiers: TAN, AODE, and HNB, in terms of clas-

sification accuracy (ACC) and the area under the

ROC curve ranking (AUC). We use the implemen-

tation of versions for our BNCs in Weka. In all ex-

periments, the classification accuracy of classifiers

on a data set was obtained via 10 runs of 10-fold

cross validation. Runs with the various algorithms

were carried out on the same training sets and evalu-

ated on the same test sets. Moreover, the probability

estimation for all the BNCs in our experiment use

the Laplace estimate.

Tables 2 and 3 report the detailed results (the

ACC and AUC with the underlying standard devi-

ation) of BNCs (TAN, AODE and HNB) and locally

weighted BNCs, respectively. In these two tables,

the symbols v and ∗ represent statistically significant

upgradation and degradation over the BNC with the

p-value less than 0.05. Based on the statistical the-

ory, the difference is statistically significant only if

the probability of significant difference is at least 95

percent, i.e., the p-value for a t-test between two al-

gorithms is less than 0.05. Overall, the results can

be summarized as:

1. Locally weighted TAN could not have significant

superiority compared to TAN in ACC and AUC

ranking. Locally weighted TAN model LWTAN

almost ties TAN on ACC around (6 wins and 7

losses), and has inferior to TAN on AUC (2 wins

and 14 losses).

2. LWAODE ties AODE on ACC (8 wins and 8

losses), and show worse performance in term of

AUC (2 wins and 16 losses).

3. LWHNB sightly fails than HNB on both ACC

(2 wins and 4 losses) and AUC (3 wins and 10

losses).

4. When handling the data set with large number of

instances (e.g., “waveform-5000” with 5000 sam-

ples), all of the locally weighted Bayesian net-

work (e.g., LWTAN, LWAODE, and LWHNB)

show inferior performance on both ACC and

AUC.

5. For the data set with large number of attributes

(e.g., “audiology” with 70 attributes), although the

locally weighted LWTAN and LWAODE could

obtain a higher accuracy 78.69% and 77.14% than

unweighted TAN (65.35%) and AODE (71.66%),

the AUC performance of all the locally weighted

Bayesian networks is worse than the unweighted

versions.

According, although the locally weighted

method has been proved as a effect improvement

for NB with simple structure due to the studies in

the previous works 10,27,28, it could not achieve good

performance on BNCs (TAN, AODE and HNB) with

complex structure. This is mainly because that for

the complex BNCs, the reason why the correspond-

ing BNCs can improve the performance in classi-

fication is attributed to the structure not the locally

weighting approach.

7. Conclusion and Future Work

In this paper, we first investigated the complex

structure models for BNCs and their improvements,

then carried out systematical experiments to analyze

the effectiveness of the locally weighting strategies

for complex BNCs focusing on Tree Augmented

Naive Bayes (TAN), Averaged One-Dependence Es-

timators (AODE) and Hidden Naive Bayes (HNB).

The systematic experiments and comparisons on 36
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benchmark data sets on the classification accuracy,

and ranking performance showed that although lo-

cally weighting had been demonstrated significantly

improving the performance of NB (a BNC with sim-

ple structure), it could not work well on BNCs with

complex structures. In principle, the core parts for

improving the performance of naive Bayes corre-

sponding to those complex BNCs are attributed to

their structures.
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