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Abstract 

The limited amount of good tools for supporting elicitation of preference information in multi-criteria decision 
analysis (MCDA) causes practical problem. In our experiences, this can be remedied by allowing more relaxed in-
put statements from decision-makers, causing the elicitation process to be less cognitively demanding. Furthermore, 
it should not be too time consuming and must be able to actually use of the information the decision-maker is able 
to supply. In this paper, we propose a useful weight elicitation method for MAVT/MAUT decision making, which 
builds on the ideas of rank-order methods, but increases the precision by adding numerically imprecise cardinal in-
formation as well.  

Keywords: Multi-criteria decision analysis, imprecision, criteria weights, elicitation. 

1. Introduction 

During the last few decades, the field of decision analy-
sis has developed as a structured approach to formally 
analysing decision problems. The field is based on re-
search from several disciplines, in particular organisa-
tion theory, business administration, psychology, statis-
tics, computer science, and philosophy. The main idea 
of decision analysis is to provide means and methods 

for helping people make better decisions2. Over the 
years, research on the formal properties of decision 
making has moved from the initial studies of a rational 
theory of choice based upon single objective decision 
problems towards pursuing the design of decision sup-
port methods for more realistic decision making situa-
tions with multiple objectives – Multi-Criteria Decision 
Analysis (MCDA). After identifying objectives and the 
available courses of action, the possible consequences 
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are analysed formally on the basis of the provided input 
data.  

Multi-Attribute Value Theory, MAVT, and Multi-
Attribute Utility Theory, MAUT1,3,4, are the most wide-
ly used MCDA methods, but there are others, such as 
the Analytic Hierarchy Process5 (AHP), the ELECTRE 
family of methods (cf., e.g., Ref. 6), and PROMETHEE 
(cf., e.g., Ref. 7). 

During the last half century, decision theory has de-
veloped significantly in a multitude of ways, but deci-
sion analysis tools are still seldom utilized to aid deci-
sion making processes in most organizations8, and peo-
ple rarely perform formal analysis to complex prob-
lems2. Behavioural concerns9 have not, despite a quite 
substantial activity within descriptive theories, got suf-
ficient attention and there is still a lack of support for 
the decision analytic process itself10.  

There are a number of models for how decision pro-
cesses should be to be rational where a number of com-
ponents must be obtained throughout the process. For 
example, in Ref. 11 a standard model of a decision 
analysis process is described, where the elicitation is 
one of the crucial modelling parts. However, the main 
focus within the research field has been on other com-
ponents.  

In this paper we focus on the elicitation part of the 
decision analysis process, i.e. the interactive part of the 
process where decision-makers express their prefer-
ences and priorities. Many papers have discussed prob-
lematic elements of the elicitation process in decision 
analysis applications, such as cognitive demand (cf., 
e.g., Ref. 12 and Ref. 4), difficulties in judging and 
expressing precise input, (cf., e.g., Refs. 13-14), and 
biases and inconsistencies that arise (cf., e.g., Refs. 15-
16). A systematic mistake in applied MAVT/MAUT 
decision making is the absence of adequate elicitation 
methods when searching for a decision-makers attitude 
to the relative importance of each criterion17. Further-
more, providing precise input is usually too demanding 
and there is a clear need for other elicitation methods 
(cf., e.g., Refs. 18-19)  

In this paper, we discuss the elicitation of MAVT/ 
MAUT criteria weights using a cardinal interpretation 
of initially ordinal or numerically imprecise cardinal 
decision-maker statements, where imprecision is mod-
elled by means of linear constraints derived from a one-
dimensional graphical representation of numerically 
imprecise criteria weight rankings. A process conform-

ing to SMART/SWING weighting is proposed, relaxing 
the need to make ratio statements between utility differ-
ences. 

1.1. Relative Importance of Criteria 

In MAUT, the most common form of value function 
used is the additive model which builds on the utility 
principle. Given an alternative Ai, let Ci be a (finite) set 
of possible but uncertain consequences associated with 
some performance value and some criterion Gs. Then 
the expected utility under criterion Gs, Us(Ai), is given 
by  
 
  (1) 
 
 
where pjk is the probability of the k:th consequence in 
Ci, and u(cjk) is the utility value of the k:th conse-
quence’s performance value cjk. Utilities are defined on 
an interval scale and a common practice is to let u(·) 
assume values in the closed interval [0,1] such that the 
worst consequence (least preferred) maps to zero and 
the best consequence (most preferred) maps to one. In 
the presence of more than one criterion, the overall 
value of alternative Ai, here denoted V(Ai), is given by 

 
 

 (2) 
 
 
where is Uj(Ai) is the expected utility of the alternative 
relative to criterion Gj. Further, wj is the weight assigned 
to this criterion. A common requirement here is that the 
weights are normalised, i.e. ∑wi = 1.  

Note that the interpretation of these weights in the 
function V() is dependent on the decision method and its 
accompanied weight elicitation method used20. From a 
decision-maker's point-of-view, however, the weights 
are generally supposed to be a numeric value represent-
ing a common “relative importance of each criterion”. 
One suggestion of a formal interpretation of weights 
equipped with usable elicitation questions for a deci-
sion-maker in the elicitation is the SMART/SWING 
process3.  

To illustrate this, given a decision problem with m 
alternatives in a set A  = {A1, A2, ..., Am} of alternatives 
and n criteria in a set G = {G1, G2, ..., Gn}, let ic↑ be the 
consequence having the best performance relative to 
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criterion Gi  and let ic↓ be the consequence having the 
worst performance relative to criterion Gi. Then the 
function ui(c) is defined such that ui(ic↓) = 0 and ui(ic↑) = 
1. If ui(·) also is linear, i.e.  
 

  (3) 
 
then this is the widely employed idea of “proportional 
scores”. The relative importance of the criteria is thus 
expressed by the magnitude of the weights wi such that 
if wi > wj then Gi is more important than Gj and if wi = 
wj the two criteria are considered equally important for a 
decision-maker. From this, it now follows that  

 
 
 
 
(4) 
 

meaning that the weight for each criterion reflects the 
desirability of the most preferred consequence for that 
criterion. The weight ratio wi / wj thus scales the ratio 
[ui(ic↑) ‒ ui(ic↓)] / [uj(jc↑) ‒ uj(jc↓)] to a desired level on 
behalf of the decision-maker. In other words, the range 
of possible consequences for each criterion from a pref-
erence perspective is implicitly modelled in the weights.  

Relying solely on the formal interpretation of 
weights and promoting it to decision-makers subject to 
weight elicitation is not a very practical approach nor 
beneficial for the decision analysis field since it is likely 
to put too high cognitive demands on the decision-
makers. The concern for the development of weight 
elicitation processes is to balance the demands put on 
the decision-makers and the equitability of the weights 
elicited, i.e. so that they represent the preferences of the 
decision-makers. In order to represent the preferences, a 
SMART/SWING weight elicitation process introduces a 
set of hypothetical decision alternatives H0 to Hn of the 
form 
 H0: 1c↓, 2c↓,3c↓,4c↓,5c↓, ... ,nc↓ 
 H1: 1c↑, 2c↓,3c↓,4c↓,5c↓, ... ,nc↓ 

 H2: 1c↓, 2c↑,3c↓,4c↓,5c↓, ... ,nc↓ 
 H3: 1c↓, 2c↓,3c↑,4c↓,5c↓, ... ,nc↓ 
 . 
 . 
 Hn: 1c↓, 2c↓,3c↓,4c↓,5c↓, ... ,nc↑ 

and the decision-maker is asked to express the differ-
ences between each V(Hi) and V(H0). The hypothetical 

alternative Hj for which this difference is considered to 
be the largest indicates that wj is the largest of the 
weights in the system and Hj is awarded with 100 
points. The remaining Hi are then awarded with points 
between 0 and 100 by the decision-maker indicating the 
ratio wj / wi. The term “swing” originates from the fact 
that each criterion is swung from worst to best when 
comparing H0 with one of the other hypothetical alterna-
tives. In this manner, the weights reflect relative im-
portance of criteria in the decision context at hand, 
where the range of possible consequences for each crite-
rion is taken into account.  

1.2. Numerically Imprecise Information 

The implicit assumption in the process described above 
is that people are really able to assess the values re-
quired for analysis accurately, such as the ratio state-
ments mentioned above. Naturally, many concepts, such 
as knowledge, beliefs, and preferences, are not naturally 
represented with numeric precision (cf., e.g., Refs. 13-
14), and the difficulty of eliciting precise decision pa-
rameters (utility values, criteria weights, and proba-
bilities on uncertain consequences) have been widely 
discussed21. There are severe inconsistencies with the 
predictions of the rational model (cf., e.g., Refs. 22 and 
15) since many fundamental assumptions regarding 
elicitations do not hold (cf., e.g., Refs. 23-26). 

There is, consequently, much uncertainty present in 
elicitation, and avoiding precise importance judgments 
is obviously advantageous for joining theory and prac-
tice27,28. Ratio weight procedures are difficult to make 
accurate due to response errors29 and numerically im-
precise weights have been proposed instead, in particu-
lar preferential uncertainties and incomplete information 
handled in a more cardinally oriented way using convex 
sets of possible values within intervals30. Differences in 
preferences and judgments can then be represented by 
value intervals31  

In the GMAA system (see Ref. 31) the extraction is 
based on trade-offs among the attributes. The decision-
maker is asked to provide an interval where he or she is 
indifferent with respect to a lottery and a sure conse-
quence. Another is direct assignment where the deci-
sion-maker directly assigns a weight interval to the 
respective criteria. In Ref. 32, an Interval SMART / 
SWING method is proposed, allowing interval judg-
ments to represent imprecision during extraction. The 
extracted weight information is represented by con-
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straints for the attributes’ weight ratios, determining 
feasible region of the weights. 

Another class of methods is based on surrogate 
weights derived from ordinal information. Decision-
makers rank the different criteria. Thereafter the order-
ing is translated into surrogate (cardinal) weights con-
sistent with the rankings. The conversion is made from 
ordinal to cardinal weights for use in an additive utility 
function. There are many proposals on how to convert 
the rankings provided by the decision-maker into nu-
merical weights, e.g., rank sum weights, rank reciprocal 
weights33, and centroid (ROC) weights12. Of the conver-
sion methods suggested, ROC has gained the most 
recognition34. For instance, SMARTER is a decision 
method having a component to elicit the ordinal infor-
mation on importance that are then converted to ROC 
weights. The information loss here is substantial. In 
many situations, people can with confidence state that 
some differences in importance are greater than others29, 
which is ignored in pure ordinal approaches. Further, 
studies have revealed that even the ranking may be 
subject to ambiguity35. 

Ordinal ranking of the criteria is effort-saving, but 
the assumption of knowing the ranking with certainty is 
indeed strong. There is also a potential information loss 
in using ordinal rankings only. Furthermore, the number 
of judgments necessary in order to obtain a sufficient 
weight system should preferably be reduced. The idea 
of cardinal rank ordering of weights addresses these 
concerns. 

2. Cardinal Rank Ordering of Criteria 

The elicitation method described below, Cardinal Rank 
Ordering of Criteria (CROC), takes both ordinal infor-
mation and numerically imprecise cardinal relation 
information into account. In its representational and 
interpretational aspects, CROC extends rank-order 
methods such as ROC into a model for ordinal ranking 
with the possibility of also handling numerically impre-
cise cardinal information. 

2.1. The CROC process 

In the CROC extraction stage, the decision-maker’s 
criteria ranking is elicited in a three step process; each 
step providing additional preference information with 
respect to criteria weights. Thereafter, the information is 
represented and interpreted. We will henceforth denote 
the set of N criteria G = {G1, ..., GN} where each criteri-

on in the set is associated with a value xi and a criterion 
weight variable wi. 

The first step (initial ordering step) 

In the first step, only ordinal information is collected in 
a criteria ranking. The ranking is done in SWING 
weighting style supported by a consequence ordering 
algorithm producing a Hasse diagram of all conse-
quences for each criterion. 

Example: Given a criterion Gi with the following in-
put statements with respect to the set of five possible 
consequences  

 
  ui(ic5) > ui(ic3) 
  ui(ic3) > ui(ic4) 
  ui(ic4) > ui(ic1) 
  ui(ic4) > ui(ic2) 
 
then the Hasse diagram (Fig. 1) over the set of five 
consequences is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Consequence order Hasse diagram 

The diagram in Fig. 1 above can then be used to support 
ordinal SWING weighting by means of comparing the 
differences between the worst and best consequences 
for each criterion, e.g., the “swing step” between C5 and 
C1 or C2 and how large this step is compared to the 
corresponding swing step for others is assessed on an 
ordinal scale. 
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The second step (initial cardinal step) 

Then the decision-maker is assumed to assess the max-
imum difference D between the weights for the most 
and the least important criteria.* The highest (lowest) 
value asserted by the user is denoted by xH (xL). The 
anchor points are that xH initially is set to 100 and xL. to 
0. A user can thus express the difference between the 
most and least important criteria by setting D = xH − xL 

within the open interval (0, 100). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. CROC weight elicitation after the initial ordering step 

Third step (cardinal rank ordering step) 

In the cardinal rank ordering step, the criteria are dis-
tributed equally, since there is no further information 
beyond a ranking. The decision-maker is then allowed 
to adjust the distances and expressing numerically im-
precise cardinal importance. Each criterion on the slider 
corresponds to a region with length equal to the default 
distance (see Fig. 2). Two criteria overlap when they are 

* We will below assume that G1 is more important than G2 which is 
more important than G3 and so forth. 

closer together than the default distance. If they are 
further apart compared to the default distance, there is a 
minimum difference between the criteria. The input to 
the method thus consists of xL and distances of these 
kinds.†  

We then obtain strength information for the differ-
ences between the criteria that could more adequately 
represent the weights. For instance, in Figure 2 initially 
five criteria in a traffic planning decision situation are 
being ranked. In the figure, “Capacity” is more im-
portant than “Accessibility”, which in turn is more im-
portant than “Cost”, and so on.  

This is the view as the second step commences, 
where the maximum difference between “Capacity” and 
“Nice and safe” is asked for. Then numerically impre-
cise cardinal information can be added by sliding the 
criteria along the slider. In Figure 3, the difference be-
tween “Capacity” and “Accessibility” is smaller than 
between “Accessibility” and “Cost”. The overlap be-
tween the visual clouds for the former two indicate that 
the decision-maker is ambiguous with respect to the 
rank order of these two criteria, whereas he/she is confi-
dent in the rank order between the latter two. The gap 
between is due to that the minimum difference between 
them is greater than zero. When using a graphical user 
interface of this kind and distributing weights in this 
way the user can interactively adjust the distances be-
tween the criteria until the distances depict an adequate 
representation of the situation.  

The decision-maker may redo the procedure if new 
information (or a better understanding) has been added. 
At no point of the procedure the decision-makers have 
to be precise. Thus, a cardinal ranking (in this sense) is 
consequently imposed over all the criteria. This requires 
N judgements. Thereafter, criteria weights can be ad-
justed if desired. Depending of the level of interaction 
the amount of adjustment might of course vary. Note 
that despite being the case in the current graphical user 
interface, the ranking does not have to be a total order. 

3. Discussion 

In prescriptive decision analysis, perceptions are subject 
to change and evolve over time, and the representation 
of these perceptions should be dynamic. Beliefs and 
preferences are not static, and the decision-maker’s 
view on what is important (and the relations) for the 

† With no cardinal information the procedure produces ROC weights. 
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decision may change during the progress of the decision 
process.  

 

Fig 3. CROC weight elicitation after the cardinal rank order-
ing step 

The CROC method was employed in three case 
studies. The decisions faced in the cases were of the 
same magnitude, influencing citizens in urban areas. 
Case 1 is described in more detail in Refs. 36-38, case 2 
in Ref. 35, and case 3 in Ref. 39. Here, we compare the 
real-life elicitation aspects of the three cases. 

In case 1, the stakeholders asked for weight state-
ments were the decision making politicians. The case 
focussed on evaluating seven competing environmental 
planning strategies in the municipality of Örebro having 
approximately 130,000 inhabitants. Prior to a first 
weighting round, two joint workshops were held in 
order to generate the set of fundamental evaluation 
criteria. Following this, four consecutive joint work-
shops were held involving the civil servants and politi-
cians focussing on appraisal of the alternatives, includ-

ing generation of means criteria and indicators for ap-
praisal. After these workshops, a second weight elicita-
tion round was performed, followed by two joint work-
shops for analysing and discussing decision evaluation 
results. 

Case 2 treated the same decision problem as case 1, 
but the stakeholders asked for weight statements were 
high school students in the municipality. A web applica-
tion for gathering of larger amounts of stakeholder pref-
erences was set up. Weight elicitation was conducted at 
two separate occasions and between these two occasions 
the students were partitioned into three groups, where 
group 1 did not discuss the issue, group 2 had teacher 
assisted discussions and group 3 had a discussion using 
a web forum. 

In the cases 1−2, both the weight elicitation methods 
direct weight assessment and CROC were employed 
twice at two different occasions a couple of months 
apart. The settings in the cases 1 and 2 were similar in 
terms of type of decision-problem and decision process, 
yet the elicitation outcome of these two cases differed a 
lot. Since the two elicitation procedures employed var-
ied regarding the elicitation components (extraction, 
representation, and interpretation), it is useful to com-
pare these aspects. In case 1, statements from both elici-
tation occasions were represented in constraint sets 
generated by the interpretation stage. When the changes 
are minor (which could be attributed to unintended 
change) the constraint sets are practically identical. In 
case 1, nearly all changes were minor and resulted in 
identical interpretations. In case 2, employing direct 
weight assessment, the number of major changes (which 
could not be attributed to unintended change) were 
many more than what would be expected when relating 
them to the similar situation in case 1. This can partly be 
attributed to the fact that minor (unintended) changes in 
statements on importance cannot be handled realistically 
in the interpretation of the direct method. The impreci-
sion even in the ordinal weight information provided by 
the decision-makers suggests that there is a need for 
methods that can handle such input. 

In case 3, the CROC method was employed to 
weigh the criteria of “Environmental impact” assessed 
from life-cycle cost evaluations, “Ethics” assessed by 
scoring the alternatives under consideration against the 
UN millennium targets, and “Cost” in a decision regard-
ing destruction of hazardous materials. The CROC 
method was used and the ranking of criteria was done in 
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a SWING approach. Due to the highly numerically 
imprecise properties of the utility assessments as well as 
the scoring procedure of the alternatives, ratio based 
elicitation methods were deemed as less meaningful 
than rank based approaches. Still, it was possible to 
identify a most preferred alternative. 

4. Conclusion 

This paper sums up and explicates the theoretical and 
empirical work with the CROC method. The outcome of 
the comparison between the cases was that the CROC 
interpretation captures the imprecision and ambiguity of 
decision-maker preferences in a realistic manner and 
that the method was more robust and persistent to noisy 
input. Further, it involves less decision-maker judg-
ments than interval-based methods, making it feasible 
when the number of criteria grows, as well as the fact 
that it can be employed without forcing a decision-
maker to make quantitative statements. The CROC 
method’s extraction part is graphical and its design 
encourages imprecision, rendering it suitable for deci-
sion analysis processes where imprecision and ambigui-
ty are prevailing both with respect to the performance of 
decision alternatives and the relative importance of 
criteria. 

The software utilised in the article can be download-
ed from www.preference.bz. 
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