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Abstract 

This paper considers the problem of erosion in choke valves used on offshore oil platforms. A parameter commonly 

used to assess the valve erosion state is the flow coefficient, which can be analytically calculated as a function of 

both measured and allocated parameters. Since the allocated parameter estimation is unreliable, the obtained 

evaluation of the valve erosion level becomes inaccurate and undermines the possibility of achieving good 

prognostic results. In this work, cluster analysis is used to verify the allocated parameter values and an ensemble of 

Kernel Regression models is used to correct the valve flow coefficient estimates. 
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parameters in order to simulate the uncertainty in their 

values, in analogy to what is observed in the three 

allocated parameters of the choke valve case study. 

The main contributions of this work to the field of 

prognostic concern the pre-treatment of noisy and 

unreliable data. In this context we have developed an 

original procedure which allows evaluating the quality 

of the prognostic data available and, eventually, 

improving it. In particular we have: (i) proposed a 

monotonicity-based index for the evaluation of the 

quality of a degradation indicator; (ii) developed a 

clustering-based procedure for establishing whether 

allocated parameter estimates are reliable; (iii) 

developed a method for improving the estimates of 

unreliable parameters based on an original strategy for 

the aggregation of multiple model outcomes. 

The application of these methods to the problem of 

choke valve erosion assessment can potentially improve 

the accuracy in the estimation of the choke valve flow 

coefficient, which is extensively used in the oil & gas 

industry for wells condition monitoring. Furthermore, 

the methods can be applied in many other situations 

where some unreliable parameter estimates are used. 

The paper is framed as follows. The traditional 

procedure for the construction of a health indicator 

assessing the choke valve erosion state is presented in 

Section 2. Section 3 illustrates the clustering procedures 

introduced to verify the reliability of the allocated 

parameters; based on the results of the cluster analysis, 

an artificial dataset is built for validating the 

effectiveness of the proposed clustering method 

(Section 4); to improve the accuracy of the allocated 

flow rates, a KR ensemble is developed, verified on the 

artificial case study and then applied to the real case 

study; finally, the estimated flow rates are used to 

calculate the health indicator (Section 5). Conclusions 

and potential perspectives for future work are drawn in 

the last Section. 

2 Choke Valve Erosion Assessment 

In oil and gas industries, choke valves are normally 

located on top of each well and are used to balance the 

pressure on several wells into a common manifold to 

control flow rates and protect the equipment from 

unusual pressure fluctuations.  

In Fig. 1, a choke valve is sketched. The throttle 

mechanism consists of two circular disks, each with a 

pair of circular openings to create variable flow areas. 

One of the disks is fixed in the valve body, whereas the 

other is rotated either by manual operation or by 

actuator, to vary or close the opening. For large pressure 

drops, the well streams which contains gas, liquid and 

sand particles can reach 400-500 m/s and produce heavy 

metal loss mainly due to solids, liquid droplets, 

cavitation and combined mechanisms of erosion-

corrosion, resulting in choke lifetimes of less than a 

year. Erosion management is vital to avoid failures that 

may result in loss of containment, production being held 

back, and increased maintenance costs. Moreover, 

several chokes are located subsea, where the 

replacement cost is high. Then, the need has increased 

for reliable models to estimate erosion and lifetime of 

choke valves, in order to allow implementing effective 

maintenance strategies.15-17 

2.1 Choke valve health state indicator  

A common indicator of the valve flow capacity is the 

flow coefficient CV, which is related to the effective 

flow cross-section of the valve. Given a differential 

pressure P, the flow rate q across the valve is 

proportional to the flow coefficient CV
18:

w

V
PCq  (1) 

where / w is the relative density of the substance across 

the valve, i.e. the ratio of the substance density to the 

water density. Tests are performed by manufacturers on 

new valves to evaluate the theoretical valve flow 

coefficient )(th
VC  for different values of the valve 

opening . In practice, )(th
VC , where is close to 

1 and depends on the type of choke considered.  

Erosion is a slow process. For a specific valve opening, 

erosion produces a gradual increase of the valve area 

available for the flow transit. Given  and P, erosion 

determines an increase in q modeled by a corresponding 

increase in CV (eq. 1). For this reason, the difference 

VC  between the actual (CV) and the nominal ( th
VC )

values of the valve flow coefficient is retained as the 

health indicator for the choke6:

)()()( th
VVV CCC  (2) 

During operation, CV is not directly measured but 

computed for a two-phase flow as18:
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where gwo mmmm  is the total mass flow rate of 

the oil-water-gas mixture, mmf gwogwo /,,,,  is the 

fraction of the oil, water and gas mass flow rates, 

respectively, o,w,g are the corresponding densities, J is 

the gas expansion factor, Fp( ) is the piping geometry 

factor accounting for the geometry of the valve/pipe 

reducer assembly and P is the pressure drop through 

the choke. Eq. (3) and the values of o,w,g, J, Fp( ) and 

N6 are derived from fluid dynamics; parameters P, ,

om , wm  and gm  are measured or allocated during 

operation.

2.2 Choke valve dataset 

For a correct assessment of the choke erosion state and 

the prediction of its remaining useful life, it is 

fundamental to obtain frequent and reliable 

measurements or estimates of the parameters P, , om
, wm  and gm  used to compute the health indicator 

VC . Nevertheless, only the pressure drop P and the 

valve opening  are measured during standard daily 

inspections (SI), whereas measures of water, oil and gas 

flows rates are taken downstream of the choke only 

during well tests (WT) with a multiphase flow 

separator. On a daily basis, the values of om , wm  and 

gm  are allocated for a single well by a software based 

on the measured total production from a number of 

wells and on physical parameters (pressures and 

temperatures) related to the specific well. The available 

information consists in 259 P and  measurements 

performed every operational day, in 7 om , wm  and gm
measurements performed at times t=0.4, 18.4, 61.5, 

135.8, 180.3, 250.6, 276,7 during well tests and in the 

259 daily allocated values of these latter three 

parameters (Table 1). Fig. 2 shows the parameters 

trends during standard inspections (continuous line) and 

well tests (stars). Fig. 3 shows the values of the health 

indicator VC  computed using daily standard 

inspections data (continuous line) and well test 

measurements (stars). 

Table 1.  Available information

Number of 
patterns P and 

om , wm
and gm

Standard 
Inspections (SI) NSI=259 Measured Allocated 

Well Test 
Inspections (WT) NWT=7 Measured Measured 

In general, CV is expected to be monotonic since 

erosion cannot decrease in time unless maintenance 

actions are performed. A quantitative index of 

monotonicity is the Spearman’s rank correlation used in 

statistics to assess how well the relationship between 

two variables can be described using a monotonic 

function.19 The curve of CV computed using the SI 

data, is highly noisy and presents remarkable 

oscillations. The Spearman’s rank correlation 

coefficient rS between CV and time tk at which the 

measurements are taken is computed as: 

)1(

)(6

1
2

1

2

NN

kR
r

N

k
kC

S

V x
 (4) 

where xk is the five-dimensional vector containing the 

parameter values collected at time tk, and )( kCVR x  and 

k are the ranks (i.e., the relative positions) of pattern xk

when all patterns are ordered with respect to the values 

of CV and tk, respectively. Values of rS close to 1 are 

expected for a monotonic quantity.  

Results show that CV behaves monotonically 

(rS=0.9643) only when WT measurements are used to 

compute it. On the contrary, the lower monotonicity 

(rS=0.7401) obtained when CV is calculated using SI 

data suggests that some of the allocated mass flow rates 

may be unreliable. A cluster analysis is performed in the 

next Section in order to verify this hypothesis. 

3 Clustering 

Let X be a generic set of N patterns ][ u
k

r
kk xxx ,

k=1,…,N, of P parameters which can be divided in a 

vector r
kx  of pr reliable parameters )( k

r
p tx , p=1,…, pr

and another vector u
kx  of pu unreliable parameters 

)( k
u
p tx , p=pr+1,…,P.

In general, the distinction between reliable and 

unreliable parameters can be achieved considering 

expert judgment, data analysis or by resorting to data 

validations techniques which allow detecting anomalous 

behaviors in datasets. In the choke valve case study, the 
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C-Means (FCM)21 which is based on the minimization 

of a weighed sum Y of the distances d(xk, vc) between 

the patterns xk and the cluster centers vc.  

),()]([ 2

1 1

ckk
C

c

N

k
c dY vxx  (5) 

where the weight c(xk) denote the membership of xk to 

cluster c, and  is a parameter which controls the degree 

of fuzziness of the clusters (often a value between 1 and 

2 is found suitable in applications9). In the traditional 

algorithm7, the distance is Euclidean. The membership 

values c(xk) and the cluster centers vc are computed via 

an iterative procedure reported, for completeness, in 

Appendix A. 

In this work, for the validation of the unreliable 

parameters, two different partitions (
r

and 
u
) of the 

dataset X into C clusters are considered: 
r
 is obtained 

using the unsupervised Fuzzy C-Means (FCM) 

clustering technique in the parameters space S
r
, whereas 

u
 is obtained by applying the same technique in the 

parameters space S
u
.

In Section 3.1, the main steps of the procedure of cluster 

analysis proposed are presented; in Section 3.2, the 

results of its application to the choke valve erosion case 

study are discussed. 

3.1 Cluster analysis 

The information used to build the partition 
r
 is 

incomplete, since only pr out of P parameters are used; 

on the other hand, the cluster structure thereby 

identified is assumed as reference in the comparison 

with the partition 
u
, since it is built using only the pr

reliable parameters in r
kx .

Notice that, due to the incompleteness of the 
r

information base, one could observe disagreement 

between 
r
 and 

u
 not only when the values of the 

unreliable parameters in u
kx  used to build 

u
 are 

incorrect, but also when they give information which, 

despite being correct, is uncorrelated with that given by 

the reliable parameters in r
kx . For example, two 

different clusters can coincide when projected on S
r
 and 

be well separated on S
u
 instead; in such a situation, one 

can obtain partitions 
r
 and 

u
 which are significantly 

different even if the uncertain parameters estimates are 

accurate. Since in the choke valve case study the 

unreliable parameters ][ gwou
k mmmx  are 

somehow correlated to the reliable parameters 

][ Pr
kx  (see eq. (3)), situations where 

uncorrelated signals have to be handled are not 

considered in this work. 

Operatively, the cluster analysis is performed as 

follows: 

(i) The optimal number of clusters C to be used for the 

partitions r and u is identified. This is obtained by 

considering the minimum of the compactness and 

separation validity function s(C):

),(min

),()(
1

)(

,

1 1

ji
ji

ck

C

c

N

k
kc

d

d
N

Cs
vv

vxx
 (6) 

 which represents the ratio between the cluster 

compactness, measured by the average distance of 

the patterns from their cluster centers and the 

separation between the clusters, measured by the 

minimum distance between two cluster centers. 

Notice that the numerator tends to decrease when 

the compactness increases and the denominator 

tends to increase when the separation increases. 

Thus, in order to obtain a partition characterized by 

highly compact and well separated clusters, one has 

to find the optimal number of clusters which 

minimizes the validity function s(C).

(ii) The fuzzy partitions 
r
 and 

u
 of the N data into C

clusters are obtained using the FCM clustering 

algorithm (see Appendix A). 

(iii) The clusters of 
r
 and u are bi-univocally 

associated cr cu by minimizing the partition 

distance D(
r
, u) between the partitions 

r
 and u.

In this respect, the distance D(
r
, u) defined in 

Ref. 22 has been used: 

C

c

N

k

k
u
ck

r
cur

SI

N
D

1 1 2

)()(
),(

xx
 (7) 

 where 0 )(,
k

ur
c x 1 is the membership of the k-th

pattern to the c-th cluster of the partition 
r
 and 

u
.

(iv) Crisp partitions 
r
 and 

u
are obtained from the 

fuzzy partitions 
r
 and, respectively, 

u
, by 

assigning a pattern xk to a given cluster c if its 

degree of membership to the cluster, c(xk), exceeds 

a predefined threshold )1,0( , which represents 

the required degree of confidence for the 

assignment. If the condition )( kc x  is not 

fulfilled for any cluster or if it is verified for more 

than one cluster, the pattern is not associated to any 

cluster. The crisp partitions 
r
 and 

u
are compared 

by considering the difference between the sets of 

patterns rcX  and ucX  assigned to the associated 
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clusters cr and cu. A large difference in the 

assignment of the patterns to the clusters is taken as 

a symptom that the information conveyed by the 

unreliable parameters may be misleading. 

3.1.1 Results 

According to this procedure, the dataset XSI of the NSI

=259 SI available patterns kx , k=1,…, NSI is projected 

into the subspaces S
r
= P×  and S

u
= om × wm × gm  of 

the measured (reliable) and allocated (unreliable) 

parameters of the choke valve case study, respectively. 

Two partitions 
r
 and 

u
 of the dataset XSI into C=5

clusters are obtained using the FCM algorithm with 

degree of fuzziness =2. 

The clusters of 
r
 and 

u
 are then coupled by 

minimizing the partition distance D(
r
,

u
) in eq. (7) and 

the same cluster index c=1,…,5 is assigned to each 

member of the pair of associated clusters. The minimal 

value found for the partition distance is 0.47 which is 

high considering that, by definition, the maximum 

partition distance is 1. With a degree of confidence 

=0.4, 255 patterns out of the total 259 patterns of XSI

are assigned without ambiguity to the clusters of 
r
 and 

219 to the clusters of 
u
. The remaining patterns are 

ambiguous. Ambiguous patterns in 
r
, which differ from 

those in 
u
, are located at the boundaries between 

clusters 1 and 3 and clusters 2 and 3, and for this reason 

they are assigned to both clusters. 

Fig. 4 shows the partitions 
r
 and 

u
 of the 259 SI 

patterns in the space S
r
. It can be seen that in 

r
, the 

clusters are clearly separated, contrarily to what happens 

in 
u
. Moreover, one can observe large differences in 

clusters’ composition, e.g. many patterns that belong to 

cluster 1 in 
r
 are assigned to cluster 5 in 

u
; patterns of 

clusters 2, 3 and 4, which are well separated in 
r
, are, 

instead, mixed in 
u
.

Table 2 compares the number of patterns assigned to the 

same cluster in 
r
 and 

u
 (4th column) to the total 

number of patterns assigned separately to each cluster of 
r
 and 

u
 (2nd and 3rd column, respectively). Notice that, 

globally, less than half of the patterns (47%) assigned to 

a cluster of 
r
 are assigned to the associated cluster of 

u

(last row in the Table). 

Table 2.  Number of patterns assigned to each cluster in r

(2nd column), in u (3rd column), in both r and u (4th 

column) and percentage of patterns assigned to the same 

cluster in both partitions with respect to the number of patterns 

assigned to that cluster in r

Cluster c r u r & u ( r & u)/( r)
1 45 15 14 31.11% 

2 56 49 15 26.79% 

3 77 48 32 41.56% 

4 25 47 15 60.00% 

5 52 60 43 82.69% 

255 219 119 46.67% 

3.2 Supervised evolutionary clustering 

To confirm the conclusions drawn in the previous 

Section, a further analysis based on a supervised 

clustering technique is here performed. Firstly, a 

partition 
s
, as similar as possible to 

r
, is obtained 

using a supervised evolutionary clustering technique 

based on Mahalanobis metrics in the space of all 

parameters. 

A set Xlab of Nlab labeled training data is built by 

choosing, among the N patterns of X, those belonging to 

one of the C clusters in 
r
 with a membership 

Fig. 4.  Visualization on the space Sr= P×  of the patterns 

assigned to the five clusters in r (top) and u (bottom). In the 

top graph, the WT patterns are also shown (black dots, 

numbered in chronological order). 
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9.0)( kcr x  and labeling them with the index c of the 

cluster they are assigned to. The evolutionary algorithm 

searches for the optimal metrics to be used by the FCM 

in order to achieve clusters as close as possible to the 

clusters of the labeled patterns.  

In this view, each cluster c is defined by an individual 

distance through a dedicated Mahalanobis metric, 

defined by a definite positive matrix Mc:

)()(),( T2
ckcckckc

d vxMvxvxM  (8) 

The classification task amounts to an optimization 

problem in which the metrics, i.e., the geometric 

distance functions, become additional parameters to be 

determined besides the fuzzy partition. The supervised 

target of the optimization is that of minimizing the 

partition distance D( , *) between the a priori known 

partition  and the obtained partition * as defined in eq. 

(7).

For the optimization, we integrate an evolutionary 

algorithm for determining the C optimal geometric 

distance functions21 with the FCM algorithm for 

determining the optimal fuzzy partition based on such 

distance. For more details on the algorithm one can refer 

to Ref. 9. 

A measure of importance )( pxI cM  of a parameter xp,

p=1,…,P for the assignment of a pattern to a cluster c is: 

5

1

2
,

)(
j

cp pjc gxIM  (9) 

where pjcg , , j,p=1,…,P are the coefficients of the 

lower triangular matrix ][ , pjcc gG  for cluster c
obtained from the decomposition of the Mahalanobis 

matrix Mc into its Cholesky factors Gc, i.e., 

ccc GGM T .9

3.2.1 Results  

The importance values )( omI cM , )( wmI cM  and 

)( gmI cM associated to the allocated parameters are 

compared to those associated to the measured ones (

)( PI cM , )(cIM ): if the importance of allocated and 

measured parameters is similar, one can conclude that 

they both convey useful information for defining the 

partition 
s
; vice versa, if the importance of the 

allocated parameters is lower than that of the measured 

parameters, one should doubt about their reliability, 

since the information they convey appears to be 

incoherent with that of the measured parameters. 

Table 3.  Measures of importance cIM  of the different 

parameters 

Measured 
parameters Allocated parameters 

Cluster c P om wm gm

1 2.221 1.770 0.095 0.048 0.105 

2 2.410 5.933 0.000 0.001 0.002 

3 2.175 4.443 0.050 0.009 0.011 

4 0.362 7.847 0.013 0.696 0.008 

5 0.288 3.802 0.044 0.097 0.199

Table 3 reports the measures of importance cIM
obtained for the five parameters for each cluster. The 

allocated parameters have low importance compared to 

the measured ones, meaning that they do not 

significantly contribute to the assignment of the patterns 

to any of the clusters. 

The analysis performed in this Section has shown that 

the information conveyed by the allocated parameters,  

om , wm  and gm , i.e., the oil, water and gas mass flow 

rates, respectively, are unreliable and thus contribute to 

lower the quality of the choke valve health indicator 

CV. For this reason, a method for providing more 

accurate estimates of the mass flow rates has been 

developed. To test the performance of this method, an 

artificial dataset reproducing some of the main features 

of the choke valve dataset is built. 

4 Artificial dataset 

An artificial dataset XA of NA=250 five-dimensional 

patterns has been generated by sampling the values of 

the first three parameters, Ax1 , Ax2  and Ax3 , from C=5 

multivariate Gaussian distributions representing the five 

clusters of the choke valve dataset (Fig. 4). Table 4 

reports the mean and standard deviation values 

employed for sampling the patterns. The values of the 

remaining two parameters, Ax4  and Ax5 , are obtained by 

using the following deterministic functions of Ax1 , Ax2

and Ax3 .

3
1

5.2

1
24 A

A
AA

x
xxx ; AAAA xxxx 3

4
215  (10)  

In analogy with the choke valve case study, the 

parameters are divided into a vector ],[ 21
AAr xxx  of 

two reliable parameters and another vector 

],,[ 543
AAAu xxxx  of three unreliable parameters. In 
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order to realistically reproduce the uncertainties 

affecting the mass flow rates in the choke valve case 

study, a second dataset XA,noise has been built by adding 

to the unreliable parameters Ax3 , Ax4  and Ax5  of the 

patterns of XA a white Gaussian noise with probability 

0.5. To this purpose, the intensity of the noise affecting 

the allocated parameters of the choke valve case study 

has been roughly guessed by considering the root of the 

mean square difference (RMSD) between the seven WT 

mass flow rate measurements and the corresponding SI 

values. Table 4 shows that the values obtained for the 

noise are in a range between 0.8 and 1.25 times the 

standard deviations of the parameters computed using 

the SI data. The dataset XA,noise has been built by 

considering Gaussian noises with standard deviations 

equal to the parameter standard deviations.  

Table 4.  Mean and standard deviation of Ax1 , Ax
2  and Ax

3

Mean Standard deviation 

Cluster 
c

Ax1
Ax2

Ax3
Ax1

Ax2
Ax3

1 10.5 38 10 0.5 1.5 0.2 
2 11.5 -7 -3 0.3 0.3 0.5 
3 9 51 7 0.5 1.1 0.5 
4 10 10 -5 0.2 1 0.4 
5 10.3 22 0 0.07 2.5 0.2 

Nevertheless, since the intensity of the noise applied to 
Ax3 , Ax4  and Ax5  is large, when it is added to all 

patterns, the FCM algorithm is not able to find well 

separated clusters; on the contrary, in the choke valve 

case study the FCM algorithm is able to find separated 

clusters, despite the presence of noise on the mass flow 

rates om , wm , and gm . For this reason, a smaller 

global amount of noise is inserted in the artificial case 

study by sampling the points to disturb with probability 

0.5. 

Table 5.  Estimate of the standard deviations of the mass flow 

rate noises 

om wm gm

RMSD 1.495 21.677 2582.769 

 (based on SI data) 1.793 19.064 2104.903 

RMSD/ 0.834 1.137 1.227 

The cluster analysis procedure described in Section 3.1 

has been applied to parameters Ax1  and Ax2  of the 

artificial case study, which are not affected by noise. In 

the partition 
r
 thus obtained, all the 250 patterns have 

been assigned to a cluster with a degree of membership 

higher than 0.4. Repeating the same cluster analysis on 

parameters Ax3 , Ax4  and Ax5  in case of both undisturbed 

and noisy data, we have obtained a partition 
u
 for the 

undisturbed dataset XA characterized by 9 ambiguous 

patterns, i.e. patterns not assigned to any cluster with a 

degree of membership higher than 0.4, and a partition 
u,noise

 for the disturbed dataset XA,noise with 44 

ambiguous patterns, thus demonstrating that, in case of 

noise, the identification of clearly separated clusters is 

more difficult. 

Table 5 reports the number of patterns assigned to the 

same cluster in the partition 
r
 obtained by considering 

Ax1  and Ax2  and in the partitions 
u
 and 

u,noise
 based on 

Ax3 , Ax4  and Ax5 , in both cases of undisturbed and noisy 

parameters, respectively. Notice that, in absence of 

noise, the two partitions almost coincide, whereas they 

are quite dissimilar in case of noise. These results 

confirm that, in absence of noise one should expect 

similarity of the partitions 
r
 and 

u
. On the contrary, in 

case of noise on the allocated parameters, fewer patterns 

can be assigned to one cluster without ambiguity and 

many are assigned to different clusters.  

Table 6.  Number of patterns assigned to the same cluster in r

and u in case of undisturbed and noisy data. Undisturbed 

data: number of patterns assigned to each cluster in r (column 

a), u (column b) and in both r and u (column c). Noisy 

data: number of patterns assigned to each clusters in u

(column b) and in both r and u (column c) 

Cluster c r
 (a) 

u
 (b) 

r
 & 

u
 (c) (c)/(a)

Undisturbed data XA

1 48 50 48 1 

2 52 50 50 0.96 

3 50 50 50 1 

4 43 50 43 1 

5 48 50 48 1 

 241 250 239 0.99 

Noisy data XA,noise

1 48 36 25 0.54 

2 52 42 40 0.63 

3 50 49 49 0.86

4 43 43 25 0.72 

5 48 36 26 0.63 

 241 206 163 0.68 
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Finally, seven patterns of the artificial dataset XA are 

randomly sampled and left without noise in order to 

reproduce the situation of the seven WT patterns of the 

choke valve case study which have small uncertainties. 

5 Improving the Quality of the Allocated 
Parameters 

After having verified that the values of om , wm , and 

gm  of the choke valve case study are noisy and 

unreliable, a procedure for improving the accuracy of 

those parameter estimates is here proposed. This is done 

by means of empirical models which learn from a 

training set the relationships between the parameters, 

and provide as output an estimate kx̂  of the input 

parameters xk. Different regression techniques such as 

those based on the use of principal component 

analysis,23 artificial neural networks,24,25 support vector 

machines,26 evolving clustering methods27 have been 

applied to this purpose. In this work, Kernel Regression 

models10,11 have been chosen. 

Nonparametric Kernel Regression (KR) is used to build 

a model for improving the quality of the allocated 

values of oil, water and gas mass flow rates. Compared 

with parametric methods, which are defined by sets of 

parameters and predefined functional relationships, 

nonparametric methods have the advantage that they do 

not require any assumption about the mathematical 

structure of the regression model.10

KR models provide estimates by developing local 

models in the neighborhoods of the test patterns they are 

fed with. Estimates are obtained as weighted averages 

of the training patterns, with weights decreasing as the 

distance between the test and the training patterns 

increases. In this view, training patterns closer to the 

test pattern are conjectured to be more similar to it, thus 

giving the most relevant contribution to its estimate. 

Distances between test and training patterns are 

evaluated based on a subset of the available parameters 

belonging to the predictor group (PG). More details 

about the KR method are given in Appendix B.

In the choke valve case study, the choice of training 

dataset and predictor parameters is critical. In this 

respect, four different models can be devised by 

differentiating the training set as listed in Table 7.  

Table 7.  Model training procedures 

Model Training set Predictor parameters 

1
Well test data 

XWT Measured ],[ Pr
kx

2

Standard

inspections

data XSI

Measured ],[ Pr
kx

3
Well test data 

XWT

Measured & allocated 

],,,,[ gwok mmmPx

4

Standard

inspections

data XSI

Measured & allocated 

],,,,[ gwok mmmPx

The KR models return in output the unreliable 

parameters that need to be estimated RG
kx u

kx
],,[ gwo mmm .

Since the performances of the models depend on the 

characteristics of the parameter to be estimated and the 

intensity of the noise, as shown below in Section 5.1, it 

is difficult to identify a single best model.  

Using an ensemble of models allows overcoming this 

dilemma. Indeed, the general idea underlying ensembles 

is to create many models and combine their outputs in 

order to achieve a performance which is better than that 

provided by each individual model in the ensemble.12

Models’ prediction diversity plays a fundamental role 

when ensemble approaches are devised. In fact, 

individual models committing diverse errors can be 

opportunely combined in such a way that the error of 

the aggregated prediction is smaller than the error of 

any of the individual models. 

In Ref. 31, it is shown that in the case of very noisy 

parameters the reconstruction error can be reduced by 

iterating the reconstruction procedure: the 

reconstruction of the noisy parameters obtained at the 

previous iteration is repeatedly given in input to the 

reconstruction model. In this application, in order to 

obtain the estimate at one iteration, the values of the 

allocated parameters in u
kx  estimated by the ensemble 

at the previous iteration are given in input to the 

ensemble together with the original values of the 

measured parameters in r
kx .
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)ˆ,ˆ(/)ˆ,ˆ()( ,,,, mu
tst

iu
tst

mu
tst

ju
tsttstm

ij dda xxxxx  (14) 

and the entry aij of the comparison matrix A is given by 

the product of the relative importance values )( tst
m
ija x

m=1,…,4, m i, j:

i,jm
tstm

ijij aa )(x  (15) 

According to the AHP method, the quality of a matrix 

of comparison can be evaluated considering its 

consistency. Matrix 1ZA  is consistent if the following 

equation is satisfied for any i, j and k 14:

ik
k

i

k

j

j

i
jkij aaa  (16) 

In our case, to substitute eqs. (14) and (15) in eq. (16) 

gives: 

kih
ikim

km

kjim
im

km

ji

jk

ikjm
jm

km

ji

ki

kjim
im

jm

ik

jk

kjm
jm

km

jim
im

jm
jkij

a
d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
daa

,,,

,,,,

,,

where )ˆ,ˆ( ,, ju
tst

iu
tstij dd xx  and, by definition, jiij dd .

This shows that, in the proposed approach, matrix 1ZA
is consistent. 

A second criterion Z2 for evaluating the performance of 

a model takes into account the RMSE in reconstructing 

the reliable parameters in r
tstx , i.e. the root mean square 

difference between the reconstructed and measured 

values. This second criterion takes into account the fact 

that robust and reliable models should be able to 

correctly reconstruct the reliable parameters of r
tstx

despite the noise on the unreliable parameters of u
tstx .

Since all model performances are evaluated with respect 

to the same reference, i.e. the reliable measurements in 
r
tstx , the pair-wise comparison is not needed, and the 

vector of priorities 2Z  is computed by taking for each 

model h=1,…,4, the inverse of its RMSE, i.e. 
mm

Z RMSE1
2

.

Finally, the two criterions Z1 and Z2 of level 2 of the 

hierarchy are given the same importance and thus the 

priority vector  is given by:  

2

1
]5.05.0[

Z

Z
 (17) 

5.2 Results 

Given the impossibility of verifying the correctness of 

the oil, water and gas mass flow rates estimates 

provided by the AHP aggregated ensemble of KR 

models in the choke valve case study, its performance is 

firstly verified with respect to the artificial case study 

introduced in Section 4. 

5.2.1 Application to the artificial case study 

In this Section the KR models and the ensemble 

approach are applied to estimate parameters Ax3 , Ax4

and Ax5  in the artificial case study of Section 4 for 

different values of the standard deviation n  of the 

noises applied to the unreliable parameters Ax
3 , Ax

4
 and 

Ax5 . For each model, the bandwidth parameter h (eq. 

(12)) has been set through a trial and error procedure in 

order to minimize the root mean square error (RMSE) 

of the model in estimating the noisy parameters. Fig. 6 

reports the reconstruction errors of the four KR models 

for different values of the noise standard deviation n .

Notice that the performance of model 1 does not depend 

on the noise intensity, since the information used to 

develop the model (the training set of undisturbed 

patterns simulating the WT measurements) and the 

information fed to the model to estimate the unreliable 

parameters (predictor parameters ],[
21
AAr

k xxx ) are 

not affected by noise. As expected, the other model 

performances tend to decrease as the noise intensity 

increases. In particular, model 4, which is built using 

training patterns affected by the noise and receives in 

input noisy parameters, is the most affected by the 

noise. Model 2 tends to outperform the other models for 

small noise intensities. This is due to the fact that model 

2 is built using the largest training dataset and receives 

in input only the undisturbed parameters Ax
1

 and Ax
2

;

on the other side, large noise intensities tend to reduce 

the performance of this model since they affect the 

value of the response parameters Ax
3 , Ax

4
 and Ax5  of 

the training patterns. 
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Table 8.  RMSE of the KR models and ensembles in 

estimating parameters Ax
3 , Ax

4  and A
5x

Model 
1

Model 
2

Model 
3

Model
4

SM
ensemble 

AHP 
ensemble 

0.0810 0.0550 0.0822 0.0817 0.0582 0.0472 

5.2.2 Application to the choke valve case study 

The ensemble approach is finally applied to the choke 

valve case study to improve the quality of the mass flow 

rates om , wm  and gm  allocations. The test set is made 

by the 259 patterns of XSI. A leave-one-out cross 

validation procedure has been adopted29: according to 

this procedure, at each cross-validation a single pattern 

from the original dataset XSI is used as test and the 

remaining NSI-1 patterns as training. This is repeated NSI

times so that each pattern of the dataset is used once as 

test. The estimates are then used to calculate the choke 

valve health indicator CV (eqs. (2) and(3)). The 

procedure is iterated 10 times. Table 8 compares the 

value of the Spearman’s rank correlation coefficient rS

of the health indicator obtained using the SI dataset, the 

estimates of the four individual models and those of the 

SM and the AHP ensembles. 

Results in Table 8 show that estimating om , wm  and 

gm  allows increasing the monotonicity of the health 

indicator CV with respect to that obtained by directly 

using the value computed during standard inspections. 

Furthermore, notice that in this case model 3 generates a 

health indicator slightly more monotone than that 

obtained by using the AHP ensemble. Nevertheless, 

since the performance of this model in the more data-

rich and robust artificial case study are much worse than 

those obtained by the AHP ensemble (Table 7), the 

estimates obtained by the latter are used to calculate the 

choke valve health indicator. 

Table 9.  Monotonicity rs of the health indicator calculated 

using the SI dataset, the individual models estimates and those 

of the SM and AHP ensembles 

Method for mass flow rate 
estimation rs

SI data 0.740

Model 1 0.847

Model 2 0.903

Model 3 0.920

Model 4 0.843

SM ensemble 0.918

AHP ensemble 0.919

Fig. 8 shows the VC  obtained using the SI allocated 

values of om , wm  and gm  and those estimated by the 

AHP ensemble. Notice that the values of VC  obtained 

using the estimated values are more monotonic and 

more similar to those obtained in correspondence of the 

WT inspections (dots). Nevertheless, neither the AHP 

ensemble nor any of the single models considered can 

produce a totally monotonic indicator and some 

anomalous behaviors remains (e.g., some peaks such as 

the one occurring between 150 and 200 operational days 

which corresponds to a decrease in the pressure drop not 

followed by a decrease of the allocated values of the 

mass flow rates).  

6 Conclusions 

In this paper, we have tackled the problem of providing 

a reliable health indicator of a choke valve used in 

offshore oil platforms which undergoes erosion. The 

health indicator is derived from the valve flow 

coefficient which is a valve parameter that regulates the 

analytical relationship between the pressure drop across 

the choke and the flow of oil, water and gas through the 

choke. The difference between the theoretical and actual 

value of the valve coefficient highlight the contribution 

of the erosion. The theoretical value is given by the 

valve producer, while the actual value can be 

analytically calculated. A major problem is due to the 

inaccuracy of oil, water and gas mass flow rates which 

are used to calculate the actual valve flow coefficient. In 

Fig. 8.  Comparison of the health indicator obtained using the 

allocated values of the mass flow rates and those estimated by 

the AHP ensemble. 
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fact, such values are not directly measured, but allocated 

for a single well by a software based on the measured 

total production of a number of wells and on physical 

parameters (pressures and temperatures) related to the 

single well. They are therefore affected by large 

uncertainties which lead to highly inaccurate 

calculations of the erosion state of the choke valve. 

The scope of this paper has been to devise a procedure 

to improve the quality of those allocated parameters 

based on the other available measurements (pressure 

drop and choke opening) which are conjectured to be 

reliable. Operatively, a number of well tests have been 

performed throughout the valve life and few reliable 

measurements are available also for the oil, water and 

gas flow rates. 

In the paper, Fuzzy C Means clustering has been applied 

to verify the consistency of the measured and allocated 

parameter. A comparison of the FCM partitions 

obtained in the space of the measured and allocated 

parameters has been made and the importance of each 

parameter has been evaluated in the data partitioning by 

a supervised evolutionary clustering. The results of the 

analyses performed on the choke valve data have 

indicated the low reliability of the allocated values of 

the mass flow rates. This has led to the development of 

a method for improving their quality.  

To this aim, Kernel Regression models have been 

devised. Different training procedures have been 

adopted to generate diverse models within an ensemble 

approach. To aggregate the outcomes of the individual 

models, an original technique based on the Analytic 

Hierarchy Process (AHP) method has been used. The 

results obtained in an artificial case study, reproducing 

the choke valve case study, have confirmed the 

improved performances of the ensemble with respect to 

any of the single KR models. The application of the 

proposed method to the choke valve case study has 

allowed significant improvement of the oil, water and 

gas mass flow rates calculation and, as a consequence, it 

has improved the quality of the health indicator. 

Since a general application of the proposed approach is 

envisioned in situations in which unreliable parameter 

values need to be improved by resorting to a set of 

reliable parameters, future works will be devoted to 

demonstrate its applicability in different industrial 

contexts. 

Appendix A: The Unsupervised Fuzzy C Means 
Technique 

The Fuzzy C Means (FCM) technique is an 

unsupervised clustering technique, since it makes no use 

of a priori known information on the true classes of the 

data. The clustering is based on the minimization of a 

weighed sum Y of the distances d(xk,vc) between the 

patterns xk and the cluster centers vc,

),()]([ 2

1 1

ckk

C

c

N

k
c dY vxx

 (A1) 

where the weight )( kc x  denotes the membership of xk

to clusters c and  is a parameter which controls the 

degree of fuzziness of the clusters (often a value of 2 

has been found suitable as in Ref. 9). In the traditional 

algorithm7 the distance is Euclidean: 

)()(

),(),(

T

22

ckck

ckIck dd
vxIvx

vxvx
 (A2) 

where I is the identity matrix.  

The membership values )( kc x  which minimize Y (eq. 

(A1)) for a given a set of centers vc, c=1,…,C, are 

computed as in eq. (A3) and used in eq. (A4) to 

compute a new optimal set of clusters centers, which are 

in return used in eq. (A3) to update the membership 

values. The iterative procedure provides the optimal 

fuzzy partition of the dataset. 
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Based on the set of optimal centers vc, c=1,…,C, a 

generic pattern xk is assigned to cluster c provided that 

its membership )( kc x  exceeds a threshold )1,0(

representing the degree of confidence that xk belongs to 

c. If the condition )( kc x  is never fulfilled or if it 

is verified for more than one value of c, the pattern is 

not associated to any cluster. 
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Appendix B: The Kernel Regression method 

Let Xtrn={xk}, k=1,…, Ntrn be the training set used for 

the estimate of the test pattern xtst. To develop the KR 

model, parameters are divided into a predictor group 

(PG) and a response group (RG) (with the two groups 

possibly overlapping). For the estimate of xtst, the KR 

algorithm assigns to each training pattern xk a weight 

wk=K[dPG(xtst,xk)], where K is the kernel function which 

produces the weight for a given distance dPG(xtst,xk), 

between the training and the test patterns, computed 

considering only the parameters of the predictor group. 

The estimate RG
tstx̂  of the RG parameters of the test 

patterns is obtained as a weighted average of the RG 

parameters of the training patterns: 

trn

trn

N

k
k

N

k

RG
kk

RG
tst

w

w

1

1ˆ

x
x  (11) 

The kernel function K must be such that training 

patterns with small distances from the test pattern are 

assigned large weights and vice versa. Among the 

several functions which satisfy this criterion, the 

Gaussian kernel is commonly used28:

2

2

2 2
exp

2

1
)(

h
d

h
dK PG

PG  (12) 

where the parameter h defines the kernel bandwidth and 

is used to control how close training patterns must be to 

the test pattern to be assigned a large weight. In order to 

compute dPG, the PG parameters are normalized to mean 

equal to 0 and standard deviation equal to 1. 
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