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Abstract

Network intrusion detection systems (NIDSs) have become an indispensable component for the current
network security infrastructure. However, a large number of alarms especially false alarms are a big
problem for these systems which greatly lowers the effectiveness of NIDSs and causes heavier analysis
workload. To address this problem, a lot of intelligent methods (e.g., machine learning algorithms) have
been proposed to reduce the number of false alarms, but it is hard to determine which one is the best.
We argue that the performance of different machine learning algorithms is very fluctuant with regard to
distinct contexts (e.g., training data). In this paper, we propose an architecture of intelligent false alarm
filter by employing a method of voted ensemble selection aiming to maintain the accuracy of false alarm
reduction. In particular, there are four components in the architecture: data standardization, data storage,
voted ensemble selection and alarm filtration. In the experiment, we conduct a study involved three ma-
chine learning algorithms such as support vector machine, decision tree and k-nearest neighbor, and use
Snort, which is an open source signature-based NIDS, to explore the effectiveness of our proposed archi-
tecture. The experimental results show that our intelligent false alarm filter is effective and encouraging
to maintain the performance of reducing false alarms at a high and stable level.
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1. Introduction

With the rapid development of Internet, intrusion at-
tacks have become a big security problem in net-
work communication. For instance, a lot of malware
software such as Trojan, virus, worm and web-based
malicious code always causes a number of network
security threats. With the purpose of protecting net-
work security, network intrusion detection systems

(NIDSs) have been widely deployed aiming to de-
tect various network exploits in current network en-
vironment and have become an essential part of the
network security infrastructure.

In general, network intrusion detection systems
can be roughly classified into two major typesa:
signature-based NIDS and anomaly-based NIDS.
A signature-based NIDSb (also called rule-based
NIDS or misuse-based NIDS) aims to discover an

aAnother type of stateful protocol analysis [2] is the process of comparing predetermined profiles of generally accepted definitions of
benign protocol activity for each protocol state against observed events to identify deviations.
bA signature is a kind of pattern that illustrates precise descriptions of a known attack.
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attack by comparing its signatures with packet pay-
loads and this kind of detection systems is very ef-
fective in identifying known threats but ineffective
in detecting unknown exploits and variants of known
threats. While an anomaly-based NIDS detects at-
tacks by comparing its established normal profilesc

against observed events to identify significant devi-
ations, which is very good at detecting previously
unknown threats and exploits. However, it is a very
challenging task for these systems to build an ac-
curate profile in most cases because of the com-
plexity of the profile generation. In order to com-
bine the merits of these two types of NIDSs, a hy-
brid NIDS [3] that contains both signature-based
and anomaly-based detection techniques is devel-
oped and deployed in current detection strategy.

Problem. Although the NIDSs have become a
significant anti-intrusion tool and proved their val-
ues in identifying network threats, a big problem
of these systems is that too many alarms, especially
false alarms, are produced during the detection. The
false alarm rate is a key limiting factor to lower the
effectiveness of the NIDSs [5]. What is more, it is
a real challenge for a security administrator to ana-
lyze so many alarms (e.g., more than one thousand a
day) most of which are false alarms [4, 6]. The big
number of false alarms will definitely increase the
chance of analysis mistakes (i.e., ignoring the real
alarms of attacks) and reduce the analysis accuracy
(i.e., it is hard to identify real alarms from a large
number of false alarms).

In the previous work [8], we illustrated that con-
structing a false alarm filter by means of machine
learning algorithms was an effective way to mitigate
this problem. In the previous experiment, we used
Snort [7, 9] and compared the performance of differ-
ent machine learning algorithms (e.g., support vec-
tor machine, NaiveBayes, decision tree) in filtering
out false alarms. The experimental results demon-
strate that the algorithms of SVM (LibSVM), KNN
(IBK) and DT (J48) have a better single-algorithm
performance than other selected algorithms. In this
paper, we mainly investigate the performance of ma-
chine learning algorithms by using the notion of en-
semble selection in false alarm reduction based on

the fact that the ensemble method can usually per-
form better than any single algorithm [10].

Contributions. In this paper, we summarize our
contributions as below. (1) We propose an architec-
ture of intelligent false alarm filter that has the ca-
pability of keeping up the false alarm reduction at
a high and stable level. (2) We design a method of
voted ensemble selection by means of the notion of
ensemble selection in our proposed false alarm filter
to help refine false alarms based on the specific char-
acteristics of network traffic. (3) We construct three
types of Snort alarm datasets in the training and use
a real dataset to validate our method. The experi-
mental results indicate that our method can achieve
great and stable performance in false alarm reduc-
tion. (4) At last, we give an analysis about the effects
of weight values on our final results and describe
how to determine an appropriate weight value.

The remainder of this paper is organized as fol-
lows: Section 2 describes the background of ensem-
ble selection and the three selected machine learn-
ing algorithms. Section 3 describes the architecture
of our proposed intelligent false alarm filter. In Sec-
tion 4, we demonstrate the experimental methodol-
ogy, the method of constructing training datasets and
the test results with a real dataset. The analysis of
weight values is presented in Section 5. Finally, we
conclude our work in Section 6.

2. Background and Related Work

The use of computational intelligence systems (i.e,
using machine learning algorithms) is a promising
solution to help reduce the false alarms in the area
of intrusion detection. Lee and Stolfo [18] first
proposed a framework of using data mining algo-
rithms to extract features of audit records and pro-
cessing these records by means of machine learn-
ing algorithms. Then, machine learning algorithms
have become epidemic in reducing the false alarms.
Pietraszek [19] proposed a system of ALAC (Adap-
tive Learner for Alert Classification) to reduce false
positives based on the confidence of alarm classifi-
cation, their system could help classify alarms into
true or false positives. Then, Law and Kwok [20]

cA normal profile is used to represent the normal behavior of a user, host or network connection.
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proposed a method of reducing false alarms by using
KNN classifier. They established a normal model to
represent the sequence of incoming alarms and iden-
tified deviations from that model to detect anoma-
lies. Later, Davenport et al. [21] presented an anal-
ysis on how to control false alarm rate within a de-
sired scope and proposed to minimize the missing
rate by using support vector machine (SVM).

In addition, Soleimani et al. [17] developed a
self-adaptive controlling mechanism that archived
the Snort alarms in a well-formed abstracted for-
mat aiming to manage the huge amount of alarms.
Their key idea is to apply hash technique to make
the abstraction process time-effective and then store
the abstracted alarms in time-based hierarchical ta-
bles. Some other work can be found in [22, 23, 27,
28, 29, 30]. Differently, our work aims to propose
an intelligent false alarm filter to enhance the false
alarm reduction at a high and stable level by means
of ensemble selection to incorporate the merits of
several machine learning algorithms.

In the following, we first give a brief introduc-
tion of ensemble selection which is established and
developed in the machine learning community. Intu-
itively, the main task of ensemble selection is to au-
tomatically detect and combine distinct algorithms
to achieve better performance than the parts (e.g., a
single algorithmd). Then, we roughly describe three
machine learning algorithms such as support vec-
tor machine (SVM), decision tree (DT) and k-nearest
neighbor (KNN) that are used in our experiments
to explore the performance of our developed intelli-
gent false alarm filter. The selection process of these
three algorithms is based on their performance in our
previous work [8].

2.1. Ensemble Selection

Over the years, a lot of machine learning algorithms
have been come up to improve existing approaches.
But no one can claim the best since their perfor-
mance depends heavily on the characteristics of the
data they are working on. To obtain a better ensem-
ble performance, the notion of ensemble selection

was first proposed by Caruana et al. [11] as a tech-
nique to build ensembles from large diverse classi-
fiers. It employs greedy forward selection to choose
algorithms and adds to the ensemble. Compared
with the other work in machine learning, ensemble
selection considers many more algorithms and clas-
sifiers, allows optimizing to arbitrary performance
metrics and includes refinements to avoid overfitting
problem (which a big problem when choosing algo-
rithms from a large database).

Specifically in ensemble selection, algorithms
are trained using as many schemes and control pa-
rameters as that can be applied to the issues. Little
or no attempt is made aiming to optimize the perfor-
mance of a single algorithm. The expectation is that
some of the algorithms will achieve better perfor-
mance to solve the problem, in combination with or
without other algorithms. In order to avoid the over-
fitting problem, Caruana et al. [11] gave advice that
initializing ensembles with the N algorithms (mod-
els) that have the best single-algorithm (uni-model)
performance, and their experiments [12] showed
that the overfitting issue became negligible if the
hillclimbing data is sufficient (around 5k points) by
using a method of cross-validation.

To explore the performance of different combi-
nations of algorithms, the process of ensemble se-
lection becomes computationally expensive. In this
case, we design a method of voted ensemble selec-
tion (see Section 3.3) with limited alternative algo-
rithms that have the best performance in [8] to make
ensemble selection applicable in this work (based on
the suggestions from Caruana et al. [11]) aiming to
reduce the huge workload and consuming time of
training. The selected three algorithms are support
vector machine (SVM), decision tree (DT) and k-
nearest neighbor (KNN).

2.2. Support Vector Machine

This concept of support vector machine [24] con-
tains a set of related supervised learning methods
that analyze data and recognize patterns by mapping
input feature vectors into a higher dimensional fea-

dThe single-algorithm performance is used to distinguish the performance of ensemble selection, which usually involves more than one
machine learning algorithm.
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ture space. To keep the computational load reason-
able, the mappings used by SVM algorithms are de-
signed to ensure that dot products may be computed
easily in terms of the variables in the original space
by defining a kernel function K(x,y). The vectors
define the hyperplanes that can be chosen to be lin-
ear combinations with parameters αi of images of
feature vectors. With this choice of a hyperplane,
the points x in the feature space can be mapped into
the hyperplane by the relation specified as below:

∑
i

αiK(xi,x) = constant

If K(x,y) becomes small with y grows further
from x, every element in the sum measures the de-
gree of closeness of the test point x to the corre-
sponding data base point xi.

2.3. Decision Tree

Decision tree [25] is a tree-like model aiming to
classify the given datasets according to the values
of its attributes. A node of a decision tree shows an
attribute and its relevant edges. Each edge connects
two nodes or a node and a leaf. A leaf is explicated
with a decision value to determine the class of the
input data. The general algorithm for building deci-
sion trees is shown as follows:

• Checking for base cases;
• For each attribute a. Finding the normalized in-

formation gain from splitting on a;
• Let a best be the attribute with the highest nor-

malized information gain;
• Creating a decision node that splits on a best;
• Recursing on the sublists obtained by splitting

on a best, and adding those nodes as children of
node.

2.4. K-nearest Neighbor Algorithm

This algorithm [26] is a method of classifying ob-
jects based on closest training examples in the fea-
ture space. Also, it is a type of instance-based
learning where the function is only approximate lo-
cally and all computation is deferred until classifi-
cation. An object is classified by a majority vote of

its neighbors with the object being assigned to the
class, which is the most common among its k near-
est neighbors (k is a positive integer). In the classi-
fication phase, k can be a user-defined constant, and
an unlabeled vector (a query or test point) is clas-
sified by assigning the label which is the most fre-
quent among the k training samples nearest to that
query point. For example, if k=1, then the object is
simply assigned to the class of its nearest neighbor.

3. The Architecture of Intelligent False Alarm
Filter

In this section, we mainly give an in-depth descrip-
tion of our proposed architecture of intelligent false
alarm filter. The architecture contains four ma-
jor components: data standardization, data storage,
voted ensemble selection and alarm filtration. A
high-level diagram of our proposed architecture is
demonstrated in Fig. 1.
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Fig. 1. The architecture of our proposed intelligent false
alarm filter.
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3.1. Data Standardization

By using different types of NIDSs (e.g., Snort [9],
Bro [13]), the formats of produced alarms are defi-
nitely not the same. Therefore, we should first stan-
dardize these distinct alarms into a common format
as defined in the alarm filter. For the component
of data standardization as shown in Fig. 1, its first
work is to choose some proper features from NIDS’s
alarms. Then, format conversion can be performed
after the process of feature selection.

Take Snort (version 2.9.0.5) [9] as an example,
we present three specific instances of its alarms in
Fig. 2.

Action-type protocol-type Source-ip Source-port -> Destination-ip 
Destination-port (content:"|attack signature|"; msg:"attack msg";) 
 

(a) Generic rule format in Snort 
 

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: 
"CHAT ICQ access"; flow: to_server, established; content:"User-
Agent|3A|ICQ"; classtype:policy-violation; sid:541; rev:10;) 
 
alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25 (msg: 
"DOS utf8 filename transfer attempt"; flow: established, to_server; 
content: "filename*=utf-8"; reference: cve, 2005-3573; classtype: 
suspicious-filename-detect; sid:12597; rev:2;) 
 
                          (b) Two examples of Snort rules 

03/08-21:10:44.016397 [**] [1:648:10] SHELLCODE X86 NOOP 
[**] [Classification: Executable Code was Detected] [Priority: 1] 
{TCP} 172.16.114.148:20 -> 197.182.91.233:1170 

 
(a) ICMP PING 

 
03/08-21:09:20.951492 [**] [1:382:5] ICMP PING [**] 
[Classification: Misc activity] [Priority: 3] {ICMP} 172.16.114.148 
-> 197.218.177.69 
 

                                    (b) ICMP Echo Reply 
 

03/08-21:01:59.803587 [**] [1:1201:8] ATTACK-RESPONSES 
403 Forbidden [**] [Classification: Attempted Information Leak] 
[Priority: 2] {TCP} 172.16.112.100:80 -> 206.48.44.18:1062 

                                               
                           (c) ATTACK-RESPONSES Invalid URL 

The experiment showed that the new signature engine is able 
to improve the quality of alerts by interpreting a signature-
match only as an event. 

Our work focuses on the reduction of false alarms in 
intrusion detection by using machine leaning schemes. First 
of all, we compare different machine learning schemes under 
a unified platform. Then, we propose an architecture of ada- 
ptive false alarm filter that has the ability to select the most 
appropriate algorithm to filter out false alarms for different 
network environments. 

IV. THE COMPARISONS AMONG MACHINE LEARNING 

SCHEMES 

Although a lot of research work has been applied diff- 
erent kinds of machine learning schemes into the filtration of 
false alarms in intrusion detection and shows a very high 
reduction rate, few efforts present performance comparisons 
among these used machine learning algorithms. Their perfor- 
mances may be varied under distinct environments. Thus, it 
is hard for us to decide which machine learning algorithm is 
the best. Aiming to make up this vacancy, we provide a 
unified platform for the comparisons of different machine 
learning algorithms. 

In the following parts of this section, we first introduce 
the Snort, an open source IDS that used in the comparisons, 
and illustrate its rule format. Then, we present the details of 
the feature selection of Snort alarms. With the understanding 
of the background of Snort, we then present how to construct 
the experimental datasets and describe the experimental 
methodology of comparing machine learning schemes in a 
unified platform, and finally, we detail and analyze the 
results of the comparisons. 

A. The Format of Snort Rule 

Snort [2, 6] is a lightweight open-source network intr- 
usion detection system which is popular and widely used in 
the intrusion detection community. Moreover, it is based on 
the method of misuse detection to identify network attacks. 
We use the newest Snort version 2.9.0.5 in this experiment. 
Fig. 1 illustrates the generic rule format of Snort with two 
concrete examples. 

 

 
Figure 1.  Generic rule format in Snort with two examples. 

In Fig. 1 (a), the generic rule format in Snort contains 8 
major items: action-type, protocol type, source IP address, 
source port number, destination IP address, destination port 
number, rule content and message. 

To explicitly demonstrate above generic rule format, we 
give two examples in Fig. 1 (b). The meaning of the first rule 
is to alert TCP packets ,which come from the source IP 
address of $HOME_NET to the destination IP address of   
$EXTERNAL_NET, with the rule content “User-Agent 
|3A|ICQ”. The two IP address parameters of $HOME_NET 
and $EXTERNAL_NET will be defined in the configuration 
file of Snort. The value of any indicates no specific source 
and destination port numbers. If this rule is matched, Snort 
will output an alarm with the message “CHAT ICQ access”. 
In addition to the major items, this rule also shows some 
assistant items. The item of flow presents the direction of 
packets and classtype points out the classification of this rule 
in Snort. The item of sid is the rule number and rev describes 
the version of this rule. 

According to the first Snort rule, the meaning of second 
one in Fig. 1 (b) is similar. In particular, the destination port 
number is defined as 25 and the destination IP address is 
$SMTP_SERVERS. What is more, the new emerging item of 
reference indicates that the relevant attack information of 
this rule can be referred to the vulnerability database of CVE 
[24] with the reference number of 2005-3573. 

B. Feature Selection of Snort Alarms 

In this subsection, we introduce the Snort alarms at first 
and then illustrate the way of selecting features from these 
alarms. 

When Snort detects an attack, it will throw out an alarm 
or alarms to alert this situation for the security offer. Three 
examples of these Snort alarms are given in Fig. 2. 

 

 
Figure 2.  Examples of Snort alarms. 

In Fig. 2 (a), this alarm is to alert ICMP PING which is 
classified into the Miscellaneous activity, the target type of 
packet is ICMP and the priority of this classification is 3. 
Generally, low priority numbers show high priority alarms. 

Fig. 2. Instances of Snort alarms.

In Fig.2 (a), this Snort alarm is to alert SHELL-
CODE x86, which is a type of executable code. The
target type of packets is TCP and the priority of this
alarm is 1. In general, a lower priority number in-
dicated a higher priority alarm. “172.16.114.148:20
−> 197.182.91.233:1170” shows the source IP ad-
dress and the destination IP address. “20” is the
source port number while “1170” is the destination
port number. The time of occurrence for this alarm
is “03/08-21:10:44.016397”.

The Snort alarm in Fig. 2 (b) is similar, which is
classified as Miscellaneous activity of ICMP PING.
The priority number of 3 presents that the priority of
this alarm is lower than that in Fig. 2 (a). Whereas

the priority of the Snort alarm in Fig. 2 (c) is be-
tween the above two alarms.

With the understanding of the format of Snort
alarms, we then select and construct 8 features to
represent the Snort alarms as follows: description,
classification, priority, packet type, source IP ad-
dress, source port number, destination IP address
and destination port number. The selected features
for the corresponding alarms in Fig. 2 are presented
in Fig. 3.

In Fig. 3, the value “0” in the features of source
port and destination port means that no specific port
numbers are indicated in the relevant Snort alarms.
In the experiment (see Section 4), we used Snort as
the NIDS and all its alarms were converted into the
common format represented by the above 8 features.
We further define the notion of standard alarms as
the alarms represented by the selected 8 features.

“194.7.248.153 -> 172.16.113.204” shows the source IP 
address and the destination IP address. The occurred time of 
this alarm is “03/01-21:00:47.805184”. 

The alarm in Fig. 2 (b) is similar to the first one and is to 
alert the Miscellaneous activity of ICMP Echo Reply.  

In Fig. 2 (c), this alarm is to alert the TCP packets for 
ATTACK-RESPONSES Invalid URL which belongs to the 
classification of Attempted Information Leak. In addition, 
this alarm not only gives the source and destination IP 
addresses, but also points out the source port number 80 and 
the destination port number 12624. The priority number 2 
means that the priority of this alarm is higher than the other 
two alarms. 

Before the comparisons, we should first standardize the 
Snort alarms into a common format that can be processed by 
the machine learning schemes. With the understanding of the 
Snort alarms, we select and construct 8 features to represent 
the alarms as follows: description, classification, priority, 
packet type, source IP address, source port number, desti- 
nation IP address and destination port number. Three exa- 
mples of feature selection corresponding to Fig. 2 are shown 
in Table 1. 

TABLE I.  EXAMPLES OF FEATURE SELECTION OF SNORT ALARMS 

Figure 2 
Features 

(a) (b) (c) 

Descriptionn 
SHELLCODE 

x86 NOOP 
ICMP PING 

ATTACK-
RESPONSES 
403 Forbidden

Classification 
Excutable Code 

was Detected 
Misc activity 

Attempted 
Information 

Leak 

Priority 1 3 2 

Packet type TCP ICMP TCP 

Source IP 172.16.114.148 172.16.114.148 172.16.112.100

Source port 20 0 80 

Destination IP 197.182.91.233 197.218.177.69 206.48.44.18 

Destination 
port 

1170 0 1062 

 
In Table 1, we take the Snort alarms in Fig. 2 as exam- 

ples to illustrate the details of feature selection. In the experi- 
ment, all the alarms will be converted into the standardized 
format of 8-feature set. What is import, the features of source 
port and destination port will be set to 0 if no specific port 
numbers are pointed out in the Snort alarms. 

C. Datasets Construcion and Experimental Methodology 

To compare with different machine learning schemes, the 
labeled datasets are required. In this part, we introduce how 
to construct the labeled datasets at first, and then we give an 
in-depth description of the experimental methodology. 

To obtain the labeled Snort alarms (clearly indicate false 
or true alarms), we use the 1999DARPA datasets [27] as the 
basis to construct the false alarms for the experiment. First of 
all, we replay the packets of Week1 and Week3 of the 

DARPA datasets through using Snort to obtain the false 
alarms since the traffic of these two weeks is free of attacks. 
We use the default configuration of Snort version 2.9.0.5. to 
examine the traffic, and all triggered alarms are regarded as 
false alarms. The results are presented in Table 2. 

TABLE II.  THE NUMBER OF FLASE ALARMS IN WEEK1 AND WEEK3 

Week Number 
Week Day 

Week1 Week3 

Monday 1305 1173 

Tuesday 1015 1243 

Wednesday 2759 1344 

Thursday 1090 1290 

Friday 1178 1272 

Total Number 7347 6322 

 
In Table 2, we can find out that more than one thousand 

false alarms are triggered and logged everyday, which indeed 
a big challenge for a security officer. The 5 most frequent 
false alarm types in Week1 and Week 3 are listed in Table 3. 

TABLE III.  TOP5 FREQUENT FALSE ALARM TYPES 

False Alarm Type Occurrence 

ICMP Destination Unreachable Port Unreachable 6596 

ICMP Ping 2511 

ICMP Echo Reply 2511 

ATTACK-RESPONSES 403 Forbidden 636 

CHAT IRC message 267 

 
In Table 3, we count the occurrence of the false alarm 

types both in the Week1 and Week3. In this case, we have 
collected a number of false alarms. Then, we should obtain 
the true alarms as another part to construct the experimental 
datasets. 

In order to obtain the actual true Snort alarms, we deploy 
the Snort in a host and repeatedly use scanners and a packet 
generator to scan and send malicious packets to that host. We 
regarded the triggered alarms as real alarms due to the real 
happened attacks. After collecting the Snort alarms, we 
analyze and choose 5388 alarms of them as the part of real 
alarms. 

Experimental Methodology. We design the experiment as 
two phases for comparing with different machine learning 
algorithms under a unified environment platform WEKA 
[25]. WEKA is a popular open-source suite of machine lear- 
ning software which provides a number of machine learning 
algorithms. The unified platform can avoid the effects that 
caused by the algorithm implementations.  

In the experiment, we choose 6 types of machine learning 
schemes (8 specific algorithms): k-nearest neighbor (KNN), 
neural network (NN), support vector machine (SVM), 

Fig. 3. Feature Selection for Snort alarms.

3.2. Data Storage

The main purpose of this component is to provide a
passive storage space for the standard alarms. Note
that different NIDS standard alarms may be pre-
sented by a distinct set of features. All the standard
alarms will be stored in this database after the pro-
cess of format conversion in the component of data
standardization. Another function of this database is
to provide training data (corresponding to the “Ex-
tract” action as illustrated in Fig. 1) to train the fil-
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ter. This extract action requires expert knowledge
(i.e., security administrators can decide what kinds
of alarms they are interested in) to label the stan-
dard alarms (by indicating true or false to the at-
tribute of label value as shown in Fig. 4) in ad-
vance. Although this action is expensive in some
cases and should be arranged in a fixed time, it is
very useful and essential to adaptively select the best
ensemble algorithms by re-training the alarm filter
periodically. We give some example contents of the
database in Fig. 4.

@attribute description 
@attribute classification 
@attribute priority 
@attribute type 
@attribute source_ip numeric 
@attribute source_port numberic 
@attribute destination_ip numeric 
@attribute destination_port numeric 
@attribute label_value 
 
`SHELLCODE x86 NOOP`, `Executable Code was Detected`, 
1, TCP, 17216114148, 20, 19718291233M 1170, label_value 
 
`ICMP PING`, `Misc activity`, 2, TCP, 17216112100, 80, 
206484418, 1057, label_value 
 
`ATTACK-RESPONSES 403 Forbidden`, `Attempted 
Information Leak`, 2, TCP, 2061322551, 80, 17216117111, 
3457, label_value 
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Fig. 4. Example contents of standard alarms in the compo-
nent of data storage.

3.3. Voted Ensemble Selection

Ensemble selection is an ensemble learning method
in machine learning and its major advantage is that it
can combine a large set of diverse algorithms (mod-
els) into a high-performance ensemble through de-
termining proper weights for the combinations. To
make this concept of ensemble selection applicable
in our architecture, we design and develop a voted
ensemble selection with some adaptations and set-
tings for the original ensemble selection as below:

(1) Only applying the three algorithms (SVM,
DT and KNN) with default parameter settings for
the ensemble. The selection of these three algo-
rithms are based on their single-algorithm perfor-

mance in our previous work [8];
(2) Randomly choosing algorithms to add to the

initialized ensemble rather than the use of greedy
forward-stepwise selection;

(3) Using majority voting as the decision rule for
the voted ensemble selection;

(4) Evaluating and selecting the best suitable en-
semble by means of the three measures: classifica-
tion accuracy, precision of false alarm and recall of
false alarm.

The classification accuracy is the correct clas-
sification rate of both false alarms and true alarms,
while the measures of precision of false alarm and
recall of false alarm can be defined as below:

precision of false alarm =
N1

N2
. (1)

recall of false alarm =
N1

N3
. (2)

where N1 represents the number of false alarms
classified as false alarm, N2 represents the number
of alarms classified as false alarm, N3 represents the
number of false alarms.

In particular, a perfect ensemble will have a pre-
cision of 1 showing that no true alarms will be classi-
fied as a false alarm; and a recall of 1 indicating that
every false alarm will be classified as a false alarm.
In addition, the decrease of the precision (e.g., a true
alarm is classified as a false alarm) is more harm-
ful than the decrease of recall (e.g., a false alarm is
classified as a true alarm).

Moreover, we define a decision value by using
the above three measures to determine which is the
best ensemble for our intelligent false alarm filter as
follows.

decision value = w1×A+w2×B+w3×C (3)

where A represents classification accuracy, B
represents precision of false alarm, C represents re-
call of false alarm. wi represents the weight values
assigned to the corresponding measures.

In the experiment, we implemented a set of aver-
age weight values {1/3, 1/3, 1/3} for the calculation
of decision values to explore the initial performance
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of ensembles (the analysis of the weight values can
be found in Section 5). With the understanding of
the above settings and voted ensemble selection, we
give the ensemble steps as below:

• To input training data;
• To initialize the three algorithms;
• To establish the ensembles by randomly select-

ing one or more algorithms from those three al-
gorithms;

• To set a decision rule, we use the majority voting
(which is a widely used rule) in this work;

• To output results and evaluate the ensemble per-
formance.

3.4. Alarm Filtration

Based on the results of the voted ensemble selection,
we can determine and choose an ensemble with the
best performance in filtering out false alarms. Ap-
parently, the task of this component is to filter out
false alarms by using the selected ensemble algo-
rithms. As shown in Fig. 1, the outputs of this com-
ponent are the true alarms while the false alarms will
be filtered out and can be stored in another database
for the future use of security administrators (i.e., an-
alyzing the domains of these false alarms, exam-
ining whether there are true alarms amongst these
false alarms, labeling the true and false alarms as
training data).

4. Experiments and Results

In this section, we first describe our experimental en-
vironment and experimental methodology. We then
describe the method of constructing training datasets
for the intelligent false alarm filter. Finally, we show
the test results with a real dataset.

4.1. Experimental Methodology and
Environment

To evaluate our proposed architecture, we deployed
the intelligent false alarm filter off-line with Snort
under a constructed environment to explore its per-
formance. The environment is shown in Fig. 5. The

Snort is deployed between a source network (con-
sists of several hosts with four VM machines) and
a target network (consists of a host with two VM
machines) to monitor network traffic and detect at-
tacks. The generated Snort alarms will be forwarded
to the intelligent false alarm filter, and a packet gen-
erator [14] is installed in the source network to gen-
erate malicious packets in triggering Snort to gener-
ate true alarms in constructing the training dataset.

Experimental Methodology. To better evaluate
our proposed architecture, we construct three types
of datasets (labeled Snort alarms) for training so as
to cover three situations.

(a) Situation1: the number of false alarms and
true alarms is nearly equivalent.

(b) Situation2: the number of false alarms is
more than the number of true alarms (most common
in real scenarios).

(c) Situation3: the number of false alarms is less
than the number of true alarms (not common in real
scenarios).

 Target Network 

 Source Network 

 

 Snort 

 Adaptive Context-based Non-critical Alarm Filter 

 Packet Generator

 Intelligent False Alarm Filter 

 
 

 

 

Fig. 5. The deployment of experimental environment.

To implement the three algorithms (SVM, DT
and KNN), we used a unified platform WEKA [15]
which is an open-source suite of machine learning
software providing a lot of implemented machine
learning algorithms. In this experiment, we choose
specific algorithms of LibSVM, J48 and IBK which
are implemented in WEKA to represent the corre-
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sponding algorithms of SVM, DT and KNN (The
implementation is the same as our previous work
[8]). This unified platform can avoid the negative
effects that may be caused by different implementa-
tions of algorithms. By training with the above three
types of datasets respectively, we evaluate the per-
formance of ensembles based on the decision values
(calculated by measures of classification accuracy,
precision of false alarm and recall of false alarm)
and then explore the performance of the intelligent
false alarm filter with a real dataset.

4.2. Training Data Construction

According to the ensemble steps and above experi-
mental methodology, we first use the 1999DARPA
dataset [16] as the basis to construct the false alarms
for the experiment and then trigger some true Snort
alarms by using the packet generator in our con-
structed experimental environment.

In particular, we replay the packets of Week1 and
Week3 in the 1999DARPA dataset passing through
Snort to obtain the false alarms since the traffic of
these two weeks is free of attacks. In this case, we
treat all the triggered Snort alarms as false alarms.
The number of the false alarms and the top 5 most
frequent alarms are shown in Table 1 and Table 2
respectively.

In Table 1, we find that at least one thousand
alarms are triggered everyday, which is indeed a big
challenge for a security administrator. The Snort
alarms with “ICMP Destination Unreachable Port
Unreachable” are the most frequent false alarms ac-
cording to Table 2. Thus, we have obtained a total
number of 13669 false alarms for Week 1 and Week3
as shown in Table 1.

For the true alarms, we used the packet generator
in the constructed environment (as shown in Fig. 5)
to trigger Snort to produce real alarms (true alarms)
by artificially sending it a number of malicious pack-
ets (i.e., through simulating kinds of network at-
tacks). We treat the corresponding Snort alarms pro-
duced in this scenario as true alarms based on the
fact that real attacks have been occurred. We ran-
domly select 8576 alarms of them as real alarms for
the training phase.

Table 1. The number of false alarms in Week1 and Week3.

Week Day Week1 Week3
Monday 1305 1173
Tuesday 1015 1243
Wednesday 2759 1344
Thursday 1090 1290
Friday 1178 1272
Total number 7347 6322

Table 2. The Top 5 frequent types of false alarms in Week1 and
Week3.

False Alarm Type Occurrence
ICMP Destination Unreachable
Port Unreachable 6596

ICMP Ping 2511
ICMP Echo Reply 2511
ATTACK-RESPONSES 403
Forbidden 636

CHAT IRC message 267

The construction of the three types of datasets is
illustrated as below.

(a) DATASET1 (corresponding to Situation1) :
This dataset contains 6588 false alarms and 6450
true alarms which are randomly selected from the
above false and true alarms. The occupancy ratio of
false alarms and true alarms is close to 1:1.

(b) DATASET2 (corresponding to Situation2) :
This dataset contains both randomly selected 12546
false alarms and 6743 true alarms. The occupancy
ratio of false alarms and true alarms is close to 2:1

(c) DATASET3 (corresponding to Situation3) :
This dataset contains 4087 false alarms and 8109
true alarms by the use of random selection. The oc-
cupancy ratio of false alarms and true alarms is close
to 1:2.

The use of random selection makes the selected
alarms in all these three datasets different in order
to better explore the performance of the intelligent
false alarm filter.

4.3. Experimental Results

In this section, we first present the training results
of the above three datasets (DATASET1, DATASET2
and DATASET3) and then we show the results of us-
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ing a real dataset (extracted from real network traf-
fic) to test the performance of our approach.

4.3.1. Training Results

The measures of classification accuracy , precision
of false alarm and recall of false alarm are impor-
tant factors for the evaluation of our approach. The
results of these measures are illustrated in Table 3,
Table 4 and Table 5 corresponding to the above three
constructed datasets (DATASET1, DATASET2 and
DATASET3) respectively.

Table 3. The training results with DATASET1.

Ensembles A B C
J48 0.9120 0.8900 0.9670
KNN 0.9095 0.8970 0.9530
LibSVM 0.8821 0.9160 0.8760
J48+KNN 0.9113 0.8930 0.9610
J48+LibSVM 0.8990 0.9020 0.9250
KNN+LibSVM 0.8984 0.9060 0.9190
J48+KNN+LibSVM 0.9158 0.8940 0.9690

Table 4. The training results with DATASET2.

Ensembles A B C
J48 0.9270 0.9090 0.9980
KNN 0.9257 0.9140 0.9900
LibSVM 0.8120 0.9380 0.7910
J48+KNN 0.9270 0.9120 0.9940
J48+LibSVM 0.8731 0.9230 0.8980
KNN+LibSVM 0.8725 0.9260 0.8940
J48+KNN+LibSVM 0.9294 0.9120 0.9980

Table 5. The training results with DATASET3.

Ensembles A B C
J48 0.8551 0.7020 0.8920
KNN 0.8534 0.7050 0.8730
LibSVM 0.8400 0.7030 0.8000
J48+KNN 0.8546 0.7030 0.8840
J48+LibSVM 0.8488 0.7030 0.8520
KNN+LibSVM 0.8492 0.7070 0.8420
J48+KNN+LibSVM 0.8589 0.7030 0.9100

For the above tables, A represents classification

accuracy, B represents precision of false alarm, C
represents recall of false alarm. Moreover, 10-folder
cross-validation is used in all training processes to
ensure more reliable results.

Based on the training results, the ensemble of
J48+KNN+LibSVM has the best performance re-
garding to the measures of A (classification accu-
racy) and C (recall of false alarm) for all the three
datasets. We has emphasized the best results with
bold in these tables. For other ensembles and single
algorithms, their performance is not stable. Over-
all, the training results conform to the findings that
ensembles can improve the performance of a single
algorithm. For example, the classification accuracy
of LibSVM is 0.8821 in Table 3, while the improve-
ment is made by ensemble with J48 (0.8990) or
KNN (0.8984). What is more, our ensemble method
can achieve higher values of classification accuracy,
precision of false alarm and recall of false alarm
in using DATASET2 than the other two datasets.
DATASET2 represents a common case in real sce-
narios which is our focus.

To further compare the performance of different
ensembles and illustrate the ensemble selections of
the intelligent false alarm filter, we present the re-
sults of decision values (the used weight values are
{1/3, 1/3, 1/3}) for all ensembles and single algo-
rithms in Table 6.

(In Table 6, DS1 represents DATASET1, DS2 rep-
resents DATASET2 and DS3 represents DATASET3).

Table 6. The results of decision values with average weight val-
ues {1/3, 1/3, 1/3}.

Decision Values DS1 DS2 DS3
J48 0.9230 0.9447 0.8164
KNN 0.9198 0.9432 0.8105
LibSVM 0.8914 0.8470 0.7810
J48+KNN 0.9218 0.9443 0.8139
J48+LibSVM 0.9087 0.8980 0.8013
KNN+LibSVM 0.9078 0.8975 0.7994
J48+KNN+LibSVM 0.9263 0.9465 0.8240

In Table 6, it is easily visible that the ensem-
ble of J48+KNN+LibSVM has the best decision
values for all the three datasets (0.9263 for the
DATASET1, 0.9465 for the DATASET2 and 0.8240
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for the DATASET3) which means that this ensemble
will be selected in our intelligent false alarm filter as
the best choice in filtering out false alarms.

Moreover, as shown in Fig. 6, we present the
training times of building models for all the three
training datasets by using different ensembles and
single algorithms. The training time is a major
and critical factor to evaluate whether the intelligent
false alarm filter is applicable in real scenarios. As
illustrated in Fig.6, the single algorithm of LibSVM
and the ensembles of J48+LibSVM, KNN+LibSVM
and J48+KNN+LibSVM can decide the time con-
sumption in the training for the alarm filter. In gen-
eral, more data instances require more training time.
Inspiringly, the whole time consumption of our false
alarm filter is less than 3 minutes for the DATASET2
(contains about 20k instances) which is very accept-
able in real deployment.

Fig. 6. The training time for different ensembles and single
algorithms.

4.3.2. Testing Results

To evaluate the intelligent false alarm filter in real
scenarios, we used a real dataset (contains the Snort
alarms from real network traffic) for the testing. The
traffic in the real dataset was captured by the Hon-
eypot system (deployed with Snort) which was de-
ployed in our CSlab by HoneybirdHK. The honey-
pot can counteract attempts at unauthorized use of

information systems and capture all relevant events.
The settings of our intelligent false alarm filter is the
same as that in the training phase. The specific test-
ing results are illustrated in Fig. 7.

In the testing, we first randomly selected 20%
(about 6k instances) of the total Snort alarms in the
training, and then we gradually increase the number
of alarms to evaluate the performance of our intel-
ligent false alarm filter. After every hour, we then
use new training data (manually labeled alarms) to
re-train the alarm filter. The action of labeling was
guided by the HoneybirdHK.

In Fig. 7, we use the algorithm of J48 (which has
the best single-algorithm performance in the train-
ing phase according to the decision values in Table
6) in the comparison with our method. The results
indicate that the performance of our method is grad-
ually improved (from 78.98% to 88.68%) and be-
comes more and more stable, which achieves a bet-
ter performance than that of J48. Overall, the testing
results indicate that our intelligent false alarm filter
can achieve a high filtration rate (over 80% in aver-
age) in real scenarios.
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Fig. 7. The filtration rate for the real dataset.

5. Discussions and Analysis on Weight Values

The weight value is one of the key element in af-
fecting the performance of our intelligent false alarm
filter since the selection of ensembles is determined

Co-published by Atlantis Press and Taylor & Francis 
                     Copyright: the authors 
                                    635



Enhancing False Alarm Reduction Using Voted Ensemble Selection in Intrusion Detection

by Eq. (3). The three measures are classification ac-
curacy, precision of false alarm and recall of false
alarm. A higher filtration rate does not mean a better
set of weight values. In general, a good and appro-
priate set of weight values should maintain the false
alarm filter have a high confidence in the results of
ensemble selection.

In our experiment, we used the average weight
values {1/3, 1/3, 1/3} in Eq. (3) to explore the ini-
tial performance of the false alarm filter. This set
of average weight values emphasizes the natural im-
pact of each measure on our filer and does not bias
towards any particular measure.

Intuitively, the weight values can be partially de-
cided by the definitions of the three measures. As il-
lustrated in Section 3.3, we note that the decrease of
the precision of false alarm (e.g., a true alarm is clas-
sified as false alarm) is more harmful than the de-
crease of the recall of false alarm (e.g., a false alarm
is classified as true alarm). This impact is based on
the definitions of both precision of false alarm and
recall of false alarm. In this case, a greater weight
value can be given to precision of false alarm rather
than recall of false alarm.

Moreover, the false alarm filter prefers a higher
recall of false alarm (that the number of false alarms
classified as false alarm divides by the number of
false alarms) than the classification accuracy since a
higher detection rate of false alarms can greatly im-
prove the filtration performance of our filter. For the
classification accuracy, it mainly provides an accu-
racy in classifying both true alarms and false alarms,
therefore, a greater weight value should be given
to the measure of recall of false alarm. Thus, the
weighted ranking of these three measures is: preci-
sion of false alarm > recall of false alarm > classi-
fication accuracy.

Overall, a higher decision value is expected by
the false alarm filter, which means a higher confi-
dence in the ensemble selection. To further validate
our analysis of the weight values, we implemented a
set of weight values {1/6, 1/3, 1/2} by means of the
same training datasets in Section 4.3.1. The selec-
tion of the weight values {1/6, 1/3, 1/2} is provid-
ing an example according to the weighted ranking:
precision of false alarm > recall of false alarm >

classification accuracy. The results are presented in
Table 7.

Table 7. The results of the decision values with the weight val-
ues {1/6, 1/3, 1/2}.

Decision Values DS1 DS2 DS3
J48 0.9325 0.9565 0.8225
KNN 0.9271 0.9540 0.8137
LibSVM 0.8904 0.8435 0.7743
J48+KNN 0.9301 0.9555 0.8188
J48+LibSVM 0.9130 0.9022 0.8018
KNN+LibSVM 0.9112 0.9011 0.7982
J48+KNN+LibSVM 0.9351 0.9579 0.8325

As shown in Table 7, nearly all the decision val-
ues are increased. For instance, the decision value of
the ensemble of J48+KNN+LibSVM increases from
0.9263 to 0.9351 for DATASET1, from 0.9456 to
0.9579 for DATASET2 and from 0.8240 to 0.8325
for DATASET3. Note that a higher decision value
means a higher confidence in selecting the ensem-
bles so that the weight values of {1/6, 1/3, 1/2} is
preferred by the filter than the average weight val-
ues of {1/3, 1/3, 1/3}. But the results of the best
ensemble are not affected because the ensemble of
J48+KNN+LibSVM still has the greatest decision
values for all the three datasets. The reason is that
the ensemble of J48+KNN+LibSVM achieves the
best performance with regard to measures of preci-
sion of false alarm and classification accuracy com-
pared to the other algorithms. Therefore, this en-
semble definitely has the highest decision values ac-
cording to Eq. (3).

On the contrary, we present a negative example
with the weight values {1/2, 1/3, 1/6} (precision of
false alarm < recall of false alarm < classification
accuracy) that break our suggested weighted rank-
ing. The results of the decision values are shown
in Table 8. Based on the results, we find that the
decision values of most ensembles and algorithms
are decreased (i.e., the decision value of the ensem-
ble of J48+KNN+LibSVM decreases from 0.9263 to
0.9174 for the DATASET1, from 0.9456 to 0.9350
for the DATASET2 and from 0.8240 to 0.8155 for
the DATASET3). These lower decision values show
a lower confidence in the ensemble selection than

Co-published by Atlantis Press and Taylor & Francis 
                     Copyright: the authors 
                                    636



Y. Meng, L.-F. Kwok

our example with weight values {1/6, 1/3, 1/2}.

Table 8. The results of the decision values with the weight val-
ues {1/2, 1/3, 1/6}.

Decision Values DS1 DS2 DS3
J48 0.9138 0.9328 0.8102
KNN 0.9126 0.9325 0.8072
LibSVM 0.8924 0.8505 0.7877
J48+KNN 0.9135 0.9332 0.8090
J48+LibSVM 0.9043 0.8939 0.8007
KNN+LibSVM 0.9044 0.8939 0.8006
J48+KNN+LibSVM 0.9174 0.9350 0.8155

Both the results in Table 7 and Table 8 conform
to our analysis that the weighted ranking (precision
of false alarm > recall of false alarm > classifica-
tion accuracy) is an appropriate and correct way to
decide the weight values with high confidence in en-
semble selection for our false alarm filter system. In
real settings, we suggest that administrators should
choose the specific weight values based on the above
weighted ranking.

6. Conclusions

The large number of false alarms is a big problem in
intrusion detection that greatly reduces the effective-
ness of NIDSs and causes heavier analysis workload
for security administrators.

In this paper, we proposed an architecture of in-
telligent false alarm filter and designed a method
of voted ensemble selection to enhance the perfor-
mance of false alarm reduction at a high and sta-
ble level. Specifically, our proposed architecture
consists of four major components: data standard-
ization, data storage, voted ensemble selection and
alarm filtration. The designed method of voted en-
semble selection makes the notion of ensemble se-
lection applicable in the filter. In the evaluation, we
use three measures such as classification accuracy,
precision of false alarm and recall of false alarm.
Based on these three measures, we define a decision
value to determine which ensemble can be selected
by the false alarm filter. We further conducted an
analysis on how to choose appropriate weight val-
ues for the filter in achieving a high confidence in

the ensemble selection.
In the evaluation, the experimental results indi-

cate that our proposed approach can improve the
performance of false alarm reduction and has the
capability of maintaining the filtration rate of false
alarms at a high and stable level by selecting the best
ensemble of machine learning algorithms in actual
settings. In addition, a better algorithm can be easily
added to the pool without affecting the architecture
of the intelligent false alarm filter.
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