
Relations among similarity measure, subsethood measure and fuzzy entropy

Yingfang Li , Keyun Qin , Xingxing He∗

School of Mathematics, Southwest Jiaotong University,
Chengdu 610031, Sichuan, PR China

E-mail: yingfangli010@gmail.com, keyunqin@263.net, x.he@home.swjtu.edu.cn

Abstract

In this paper we study the relations among similarity measure, subsethood measure and fuzzy entropy
and present several propositions that similarity measure, subsethood measure and fuzzy entropy can be
transformed by each other based on their axiomatic definitions. Some new formulae to calculate similarity
measure, subsethood measure and fuzzy entropy are proposed.
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1. Introduction

In fuzzy set theory, similarity measure, subsethood
measure and fuzzy entropy are three basic concepts.
They surface in many fields, such as image process-
ing, fuzzy neural networks, fuzzy reasoning, and
fuzzy control.

The similarity measure describes the degree of
similarity of fuzzy sets A and B. Wang 26 first put
forward the concept of similarity measure of fuzzy
sets and gave a computation formula. Since that
time, many researchers began to contribute to the
comparative study of similarity measures. For ex-
ample, in 1993, Pappis et al. 23 presented and com-
pared the properties of several measures of similar-
ity of fuzzy values. The work of Pappis 23 was ex-
tended by Chen et al. 8 and Wang et al. 27. Fan et
al. 11 gave a general definition of similarity measure
and discussed some properties of similarity measure.
Bustince et al. 5 proposed the concept of restricted
equivalence function and then used this function to
construct similarity measure 5,6.

The subsethood measure (also called inclusion
measure) is a relation between fuzzy sets A and B,
which indicates the degree to which A is contained
in B. Traditionally, fuzzy set inclusion is defined ac-
cording to Zadeh’s 31 original proposal. For A and B
fuzzy sets in a universe X he defined: A⊆ B iff for all
x ∈ X, A(x)6 B(x). For many researchers, this defini-
tion is too rigid and it does not do justice to the spirit
of the Theory of Fuzzy Sets 1,10,20. Because of that a
great number of fuzzy alternatives to Zadeh’s origi-
nal operator have been suggested in the literature. So
far, four axiomatizations have been given for sub-
sethood measures. The first one was given by Ki-
tainik 16 in 1987. Then Sinha and Dougherty 24 pre-
sented nine axioms for subsethood measures, plus
three additional ones. Young 30 gave four axioms
for these measures. Later, Fan et al. 12 modified one
of Young’s axioms. Finally, in 2006 Bustince et al.
4 modified two of Young’s axioms and proposed a
new class of subsethood measure called fuzzy DI-
subsethood measure.

∗Corresponding author.

International Journal of Computational Intelligence Systems, Vol. 6, No. 3 (May, 2013), 411-422

Co-published by Atlantis Press and Taylor & Francis 
                        Copyright: the authors 
                                     411

Administrateur
Texte tapé à la machine
Received 30 May 2012

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine
Accepted 12 January 2013

Administrateur
Texte tapé à la machine



Y.F. Li et al.

The entropy of a fuzzy set is the fuzziness of
that set. A measure of entropy indicates the de-
gree to which a set is fuzzy. It is therefore a fuzzy
set in F(X). Several researchers have studied fuzzy
entropy measure from different points of view. In
1972, De Luca and Termini 9 introduced some ax-
ioms that capture our intuitive comprehension to de-
scribe the fuzziness degree of a fuzzy set. Kaufmann
15 presented a method to measure the fuzziness de-
gree of a fuzzy set by a metric distance between its
membership function and the membership function
of its nearest crisp set. Yager 29 viewed the fuzzi-
ness degree of a fuzzy set in terms of a lack of dis-
tinction between the fuzzy set and its complement.
Trillas and Riera 25 proposed general expressions for
the entropy given by Yager. Loo 22 gave a definition
which contained those given by De Luca and Kauf-
mann. Burillo and Bustince 2 studied the concepts
of entropy for intuitionistic fuzzy sets and interval-
valued fuzzy sets.

In addition to their concepts, many researchers
have contributed to discussing the relations among
the above-mentioned three concepts. For example,
in 1986 Kosko 18 showed that the entropy of a fuzzy
set A is the degree to which A∪ Ac is a subset of
its complement (A∪Ac)c = A∩Ac. He also showed
19 that the classical probability of a crisp event C is
the degree to which the universal set X is a subset of
C. Then Young 30 linked fuzzy entropy, subsethood
and probability in a more general setting. Liu 21 dis-
cussed the relations among fuzzy entropy, distance
measure, and similar- ity measure of fuzzy sets. Fan
11 gave a simplified expression of similarity measure
induced by fuzzy entropy. Zeng et al. 32 investigated
the relations among subsethood measure, similarity
measure, and fuzzy entropy based on their axiomatic
definitions.

Notice that, the present paper is related to, but
different from the above-mentioned works, it fo-
cuses on discussing the relationships among sub-
sethood measure, similarity measure, and fuzzy en-
tropy in a more general setting and can be thought of
as an extension of the above works. We propose sev-
eral propositions to show that these three concepts
can be transformed by each other based on their ax-
iomatic definitions. Some new formulae to calculate

similarity measure, subsethood measure and fuzzy
entropy are also given. We can later see that the re-
sults obtained in the above-mentioned works can be
brought into line with the present work.

Throughout this paper, we write X to denote the
universal set, F(X) stands for the set of fuzzy sets
in X, P(X) stands for the set of crisp sets in X. We
assume that X is a finite set here. One can read-
ily obtain our results for X infinite. We use capital
letters A,B,C to denote fuzzy sets on X and write
A(x),B(x),C(x) for their membership functions, re-
spectively. Define Ac(x) = 1−A(x) for all x ∈ X; we
call Ac the complement of A. Let [ 1

2 ] stand for the
fuzzy set of X for which [ 1

2 ](x) = 1
2 for all x ∈ X.

2. Relation between similarity measure and
subsethood measure

Firstly we present several concepts of fuzzy set the-
ory that are necessary for our considerations.

Definition 1. 17 A function n : [0,1] −→ [0,1] is
called a fuzzy negation if it satisfies:

(n1) n(0) = 1 and n(1) = 0.

(n2) If x 6 y, then n(x) > n(y).

A fuzzy negation is said to be involutive if

(n3) n(n(x)) = x for all x ∈ [0,1].

Definition 2. 3 A continuous, strictly increasing
function ϕ : [a,b] −→ [a,b] with boundary condi-
tions ϕ(a) = a, ϕ(b) = b is called an automorphism
of the interval [a,b].

Definition 3. 17 An associative, commutative and in-
creasing function T : [0,1]2 −→ [0,1] is called a t-
norm if it has the neutral element equal to 1.

An associative, commutative and increasing
function S : [0,1]2 −→ [0,1] is called a t-conorm if
it has the neutral element equal to 0.

Example 1. 17 Table 1 lists several t-norms and t-
conorms used extensively in this paper.

Fodor and Roubens define fuzzy equivalence as a
binary operation on the unit interval in the following
way 14.
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Table 1: Several t-norms and t-conorms
T-norms Formulae of t-norms T-conorms Formulae of t-conorms

TM min(x,y) S M max(x,y)
TP xy S P x + y− xy
TL max(x + y−1,0) S L min(x + y,1)

Definition 4. 14 A function E : [0,1]2 −→ [0,1] is
called a fuzzy equivalence if it satisfies the follow-
ing properties:

(E1) E(x,y) = E(y, x) for all x,y ∈ [0,1].

(E2) E(x, x) = 1 for all x ∈ [0,1].

(E3) E(0,1) = E(1,0) = 0.

(E4) For all x,y, x′,y′ ∈ [0,1], if x6 x′ 6 y′ 6 y, then
E(x,y) 6 E(x′,y′).

We can prove that E4 is equivalent to: for all
x,y,z ∈ [0,1], if x 6 y 6 z, then min(E(x,y),E(y,z)) >
E(x,z). The following reasonable properties can be
considered for the fuzzy equivalence: for all x,y ∈
[0,1],

(E5) E(x,y) = 1 iff x = y.

(E6) E(x,1− x) = 0 iff x = 0 or x = 1.

In 2006, Bustince et al. 5 proposed the concept
of restricted equivalence function, which arises from
the concept of fuzzy equivalence and from the prop-
erties usually demanded from the measures used for
comparing images 6,7.

Definition 5. 5 A function REF : [0,1]2 −→ [0,1] is
called a restricted equivalence function, if it satisfies
the following properties:

(1) REF(x,y) = REF(y, x) for all x,y ∈ [0,1].

(2) REF(x,y) = 1 iff x = y.

(3) REF(x,y) = 0 iff x = 1 and y = 0 or x = 0 and
y = 1.

(4) REF(x,y) = REF(n(x),n(y)) for all x,y ∈ [0,1],
n being a strong fuzzy negation.

(5) For all x,y,z ∈ [0,1], if x 6 y 6 z, then
REF(x,y) > REF(x,z) and REF(y,z) >
REF(x,z).

Proposition 1. 5 If ϕ is an automorphism of the unit
interval, then

REF(x,y) = ϕ−1(1− |ϕ(x)−ϕ(y)|) with n(x) = ϕ−1(1−ϕ(x))

is a restricted equivalence function.
It is easy to obtain the following conclusion from

Proposition 1.

Proposition 2. If ϕ is an automorphism of the unit
interval, then E(x,y) = ϕ−1(1 − |ϕ(x) − ϕ(y)|) is a
fuzzy equivalence satisfying E5 and E6.

Proposition 3. If ϕ is an automorphism of the unit
interval, then E(x,y) = ϕ−1( min(ϕ(x),ϕ(y))

max(ϕ(x),ϕ(y)) ) is a fuzzy
equivalence satisfying E5 and E6.

Proof. It is easy to prove that E satisfies E1-
E3 and E5-E6. We only prove that E4 holds.
If x 6 y 6 z, then ϕ(x) 6 ϕ(y) 6 ϕ(z). There-
fore, we have ϕ(x)

ϕ(y) >
ϕ(x)
ϕ(z) and ϕ(y)

ϕ(z) >
ϕ(x)
ϕ(z) . Thus,

E(x,y) = ϕ−1(ϕ(x)
ϕ(y) )> ϕ−1(ϕ(x)

ϕ(z) ) = E(x,z) and E(y,z) =

ϕ−1(ϕ(y)
ϕ(z) ) > ϕ−1(ϕ(x)

ϕ(z) ) = E(x,z).

Next we discuss the relation between similarity
measure and subsethood measure and propose sev-
eral propositions that similarity measure and sub-
sethood measure can be transformed by each other
based on their axiomatic definitions.

In 1983, Wang 26 introduced the concept of sim-
ilarity measure of fuzzy sets and gave a formula
to calculate the lattice similarity measure of fuzzy
sets. Some formulae to calculate similarity measures
were also introduced in 8,11,23,27. Actually, if the def-
inition of fuzzy equivalence is extended to sets, we
can obtain the definition of similarity measure.
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Definition 6. 26 A function N : F(X) × F(X) −→
[0,1] is called a similarity measure if it satisfies the
following properties:

(N1) N(X,∅) = 0 and N(A,A) = 1 whenever A ∈
F(X).

(N2) N(A,B) = N(B,A) whenever A,B ∈ F(X).

(N3) For all A,B,C ∈ F(X), N(A,C) 6
min(N(A,B),N(B,C)) whenever A ⊆ B ⊆C.

In the following, we present some further axioms
in terms of similarity measure N. Some of these
properties are required in different papers and can
also be important in some applications.

(N4) N(A,B) = 1 iff A = B for all A,B ∈ F(X).

(N5) N(A,B) = 0 iff A∩B = ∅ and A∪B , ∅ for all
A,B ∈ F(X).

(N6) If A⊆ B, then N(A∪C,A)6 N(B∪C,B) for all
A,B,C ∈ F(X).

(N7) If A ⊆ B, then N(A,A∩C) > N(B,B∩C) for
all A,B,C ∈ F(X).

(N8) N(A,A∩Ac) = 0 iff A = X for all A ∈ F(X).

(N9) N(A∪Ac,Ac) = 0 iff A = X for all A ∈ F(X).

In the previous part of this paper, we have re-
ferred to four axiomatizations of subsethood mea-
sures. We will discuss the last three ones here.

On the basis of Kosko’s 18,19 subsethood mea-
sure, fuzzy entropy and Wilmott’s work 28, Young
defined subsethood measure in the following way:

Definition 7. 30 A function cVY : F(X)× F(X) −→
[0,1] is called a VY-subsethood measure, if cVY sat-
isfies the following conditions:

(C1) cVY (A,B) = 1 iff A ⊆ B, i.e., A(x) 6 B(x) for all
x ∈ X.

(C2) If [ 1
2 ] ⊆ A, then cVY (A,Ac) = 0 iff A = X.

(C3) If A ⊆ B ⊆ C, then cVY (C,A) 6 cVY (B,A) and
if A ⊆ B, then cVY (C,A) 6 cVY (C,B).

It has been pointed out in 12 that C3 is too strong
when considering the relation between subsethood
measure and fuzzy entropy. Therefore, Fan et al. 12

thought a simpler form of definition of subsethood
measure based on Young’s definition.

Definition 8. 12 A function c∗ : F(X) × F(X) −→
[0,1] is called a ∗-subsethood measure, if c∗ satis-
fies the following conditions:

(C1) c∗(A,B) = 1 iff A ⊆ B, i.e., A(x) 6 B(x) for all
x ∈ X.

(C2) If [ 1
2 ] ⊆ A, then c∗(A,Ac) = 0 iff A = X.

(C3) If A ⊆ B ⊆ C, then c∗(C,A) 6 c∗(B,A) and
c∗(C,A) 6 c∗(C,B).

Obviously, the only difference between Defini-
tions 7 and 8 is in C3 where Young demands in-
creasingness in the second component. Thus every
VY-subsethood measure is also a ∗-subsethood mea-
sure. In 2006, Bustince et al. 4 modified two of
Young’s axioms and proposed a new class of subset-
hood measure called DI-subsethood measure.

Definition 9. 4 A function cDI : F(X) × F(X) −→
[0,1] is called a DI-subsethood measure, if cDI sat-
isfies the following conditions:

(C1) cDI(A,B) = 1 iff A ⊆ B, i.e., A(x) 6 B(x) for all
x ∈ X.

(C2) cDI(A,Ac) = 0 iff A = X.

(C3) If A ⊆ B, then cDI(A,C) > cDI(B,C) and
cDI(C,A) 6 cDI(C,B).

It is shown that every DI-subsethood measure is
a VY-subsethood measure and therefore, it is also a
∗-subsethood measure.

Considering that an axiom definition must gener-
ally be abstract and simple, Fan 12 gave the follow-
ing definition.

Definition 10. 12 A function c : F(X) × F(X) −→
[0,1] is called a subsethood measure, if c satisfies
the following conditions:

(C1) If A ⊆ B, then c(A,B) = 1.

(C2) c(X,∅) = 0.

(C3) If A ⊆ B ⊆ C, then c(C,A) 6 c(B,A) and
c(C,A) 6 c(C,B).
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We can see that VY-subsethood measure, ∗-
subsethood measure and DI-subsethood measure are
special cases of subsethood measures. In the follow-
ing we derive subsethood measures from similarity
measures.

Proposition 4. Given a discrete universe X =

{x1, x2, . . . , xn}. Let N be a similarity measure, c
a function defined for all A,B ∈ F(X) by c(A,B) =

N(A,A ∩ B). Then we have the following conclu-
sions:

(1) c is a subsethood measure.

(2) If N satisfies N4 and N8, then c is a VY-
subsethood measure.

(3) If N satisfies N4 and N8, then c is a ∗-
subsethood measure.

(4) If N satisfies N4 and N5, then c is a VY-
subsethood measure.

(5) If N satisfies N4 and N5, then c is a ∗-
subsethood measure.

(6) If N satisfies N4, N7 and N8, then c is a DI-
subsethood measure.

Proof.

(1) (C1) If A ⊆ B, then c(A,B) = N(A,A ∩ B) =

N(A,A) = 1.

(C2) c(X,∅) = N(X,X∩∅) = N(X,∅) = 0.

(C3) If A ⊆ B ⊆ C, then c(C,A) = N(C,C ∩
A) = N(C,A), c(B,A) = N(B,B∩ A) = N(B,A),
and c(C,B) = N(C,C ∩ B) = N(C,B). Since
N(C,A) 6 N(B,A), we have c(C,A) 6 c(B,A).
Since N(C,A) 6 N(C,B), we have c(C,A) 6
c(C,B).

(2) (C1) The sufficiency has been proved in (1), we
only prove the necessity here. If c(A,B) = 1, then
N(A,A∩B) = 1. By N4 we have A = A∩B. Thus
A ⊆ B holds.

(C2) If c(A,Ac) = 0, then N(A,A∩Ac) = 0. As N
satisfies N8 and [ 1

2 ] ⊆ A we have A = X. On the
contrary, if A = X, then c(A,Ac) = N(A,A∩Ac) =

N(X,∅) = 0.

(C3) We only prove that A ⊆ B implies c(C,A) 6
c(C,B) here. If A ⊆ B, then C ∩ A ⊆ C ∩ B ⊆
C, we have c(C,A) = N(C,C ∩ A), c(C,B) =

N(C,C ∩ B). Since N(C,C ∩ A) 6 N(C,C ∩ B),
then c(C,A) 6 c(C,B).

(3) It follows directly from (2).

(4) We only prove that the necessity of C2 also holds
when N satisfies N5. If [ 1

2 ] ⊆ A, then c(A,Ac) =

N(A,A∩ Ac) = N(A,Ac) = 0. As N satisfies N5
we have A∩Ac = ∅, that is Ac = ∅, thus A = X.

(5) It follows directly from (4).

(6) It can be proved in the same manner with (2).

Example 2. Consider the following two similarity
measures:

N1(A,B) =
1
n

n∑

i=1

min(A(xi),B(xi))
max(A(xi),B(xi))

.

N2(A,B) =

∑n
i=1 min(A(xi),B(xi))∑n
i=1 max(A(xi),B(xi))

.

It is shown that N1 satisfies properties N4, N6,
N7, N8, N9 and N2 satisfies properties N4, N5, N6.
By Proposition 4, we obtain the following subset-
hood measures:

c1(A,B) =
1
n

n∑

i=1

min(A(xi),B(xi))
A(xi)

.

c2(A,B) =

∑n
i=1 min(A(xi),B(xi))∑n

i=1 A(xi)
.

We can conclude that c1 is a DI-subsethood
measure and therefore, it is also a VY-subsethood
measure and ∗-subsethood measure. We also con-
clude that c2 is a VY-subsethood measure and ∗-
subsethood measure.

Proposition 5. Given a discrete universe X =

{x1, x2, . . . , xn}. Let N be a similarity measure, c
a function defined for all A,B ∈ F(X) by c(A,B) =

N(A ∪ B,B). Then we have the following conclu-
sions:

(1) c is a subsethood measure.
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(2) If N satisfies N4, N6 and N9, then c is a VY-
subsethood measure.

(3) If N satisfies N4 and N9, then c is a ∗-
subsethood measure.

(4) If N satisfies N4, N5 and N6, then c is a VY-
subsethood measure.

(5) If N satisfies N4 and N5, then c is a ∗-
subsethood measure.

(6) If N satisfies N4, N6 and N9, then c is a DI-
subsethood measure.

Proof. It can be proved in the same manner with
Proposition 4.

Example 3. Consider the following two similarity
measures:

N3(A,B) =

∑n
i=1(1− |A(xi)−B(xi)|)∑n
i=1(1 + |A(xi)−B(xi)|) .

N4(A,B) =

∑n
i=1 2min(A(xi),B(xi))∑n

i=1(A(xi) + B(xi))
.

It is shown that N3 satisfies properties N4, N6,
N7, N8, N9 and N4 satisfies properties N4, N5, N6.
By Proposition 5, we obtain the following subset-
hood measures:

c3(A,B) =

∑n
i=1(1− |max(A(xi),B(xi))−B(xi)|)∑n
i=1(1 + |max(A(xi),B(xi))−B(xi)|) .

c4(A,B) =

∑n
i=1 2B(xi)∑n

i=1(max(A(xi),B(xi)) + B(xi))
.

We can conclude that c3 is a DI-subsethood
measure and therefore, it is also a VY-subsethood
measure and ∗-subsethood measure. We also con-
clude that c4 is a VY-subsethood measure and ∗-
subsethood measure.

Proposition 6. Given a discrete universe X =

{x1, x2, . . . , xn}. Let N be a similarity measure, c
a function defined for all A,B ∈ F(X) by c(A,B) =

N(Ac,Ac∪ Bc). Then we have the following conclu-
sions:

(1) c is a subsethood measure.

(2) If N satisfies N4 and N9, then c is a VY-
subsethood measure.

(3) If N satisfies N4 and N9, then c is a ∗-
subsethood measure.

(4) If N satisfies N4 and N5, then c is a VY-
subsethood measure.

(5) If N satisfies N4 and N5, then c is a ∗-
subsethood measure.

(6) If N satisfies N4, N6 and N9, then c is a DI-
subsethood measure.

Proof. It can be proved in the same manner with
Proposition 4.

Proposition 7. Given a discrete universe X =

{x1, x2, . . . , xn}. Let N be a similarity measure, c
a function defined for all A,B ∈ F(X) by c(A,B) =

N(Bc,Ac∩ Bc). Then we have the following conclu-
sions:

(1) c is a subsethood measure.

(2) If N satisfies N4, N7 and N8, then c is a VY-
subsethood measure.

(3) If N satisfies N4 and N8, then c is a ∗-
subsethood measure.

(4) If N satisfies N4, N5 and N7, then c is a VY-
subsethood measure.

(5) If N satisfies N4 and N5, then c is a ∗-
subsethood measure.

(6) If N satisfies N4, N7 and N8, then c is a DI-
subsethood measure.

Proof. It can be proved in the same manner with
Proposition 4.

In the following proposition we derive similarity
measures from subsethood measures.

Proposition 8. Given a discrete universe X =

{x1, x2, . . . , xn}. Let c be a subsethood measure, T
a t-norm, N a function defined for all A,B ∈ F(X) by
N(A,B) = T (c(A,B),c(B,A)), then N is a similarity
measure.

Proof.
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(N1) N(X,∅) = T (c(X,∅),c(∅,X)) = T (0,1) = 0. And
N(A,A) = T (c(A,A),c(A,A)) = T (1,1) = 1.

(N2) N(A,B) = T (c(A,B),c(B,A)) = T (c(B,A),c(A,B)) =

N(B,A).

(N3) If A ⊆ B ⊆ C, then N(A,C) =

T (c(A,C),c(C,A)) = c(C,A), N(A,B) =

T (c(A,B),c(B,A)) = c(B,A), and N(B,C) =

T (c(B,C),c(C,B)) = c(C,B). Since c(C,A) 6
c(B,A) and c(C,A) 6 c(C,B), then N(A,C) 6
N(A,B) and N(A,C) 6 N(B,C).

Corollary 9. In the conditions of Proposition 8, let
T = TP , then the similarity measure derived by sub-
sethood measure can be expressed as: N(A,B) =

c(A,B) · c(B,A).

Corollary 10. In the conditions of Proposition 8,
let T = TM , then the similarity measure derived by
subsethood measure can be expressed as: N(A,B) =

min(c(A,B),c(B,A)).

Remark 1. We see that the two formulae given
in Corollaries 9 and 10 are the same with the ones
given by Zeng et al. in 32 . Hence Zeng’s solutions
can be seen as two special cases of ours.

Example 4. Consider the following subsethood
measure:

c5(A,B) =
1
n

n∑

i=1

min(1−A(xi),1−B(xi))
1−B(xi)

.

By Corollary 10, we obtain the following similarity
measure:

N5(A,B) =

∑n
i=1 min(1−A(xi),1−B(xi))∑n
i=1 max(1−A(xi),1−B(xi))

.

3. Relation between similarity measure and
fuzzy entropy

A measure of fuzzy entropy assesses the amount of
vagueness, or fuzziness in a fuzzy set. De Luca and
Termini 9 formalize the properties of fuzzy entropy
through the following axioms.

Definition 11. 9 A function e : F(X) −→ [0,1] is
called an entropy on F(X), if e satisfies the following
conditions:

(EP1) e(A) = 0 iff A is nonfuzzy, i.e., A ∈ P(X).

(EP2) e(A) = 1 iff A = [ 1
2 ].

(EP3) e(A) 6 e(B) if A refines B, i.e., A(x) 6 B(x)
when B(x) 6 1

2 and A(x) > B(x) when B(x) > 1
2

.

(EP4) e(A) = e(Ac).

Let E be a fuzzy equivalence, µ a strictly de-
creasing function from [0,1] to [ 1

2 ,1] with bound-
ary conditions µ(0) = 1, µ(1) = 1

2 . For fuzzy sets
A and B, we define f (A,B) ∈ F(X), for all x ∈ X,
f (A,B)(x) = µ(E(A(x),B(x))), then we have the fol-
lowing conclusion.

Proposition 11. Given a discrete universe X =

{x1, x2, . . . , xn}. Let e be a fuzzy entropy, N a function
defined for all A,B ∈ F(X) by N(A,B) = e( f (A,B)),
then N is a similarity measure.

Proof.

(N1) For all x ∈ X, f (X,∅)(x) = µ(E(X(x),∅(x))) =

µ(E(1,0)) = µ(0) = 1, then f (X,∅) = X.
Therefore, N(X,∅) = e(X) = 0. Note that
f (A,A)(x) = µ(E(A(x),A(x))) = µ(1) = 1

2 , then
f (A,A) = [ 1

2 ]. Thus N(A,A) = e( f (A,A)) =

e([ 1
2 ]) = 1.

(N2) It is easy to see that N(A,B) = e( f (A,B)) =

e( f (B,A)) = N(B,A).

(N3) A ⊆ B ⊆ C implies A(x) 6 B(x) 6 C(x) for
all x ∈ X, by E4, we have E(A(x),C(x)) 6
min(E(A(x),B(x)),E(B(x),C(x))). By
the property of µ, µ(E(A(x),C(x))) >
max(µ(E(A(x),B(x))),µ(E(B(x),C(x)))) > 1

2 ,
i.e., f (A,C)(x)>max( f (A,B)(x), f (B,C)(x))>
1
2 . By EP3, we have e( f (A,C)) 6
min(e( f (A,B)),e( f (B,C))). Therefore,
N(A,C) 6 min(N(A,B),N(B,C)).
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Remark 2. In Proposition 11, let µ(x) = 1− 1
2 x,

E(x,y) = 1 − |x − y|n, then we have f (A,B)(x) =
1+|A(x)−B(x)|n

2 . Thus the similarity measure e( f (A,B))
is in accord with the one given in 32 .

Example 5. Consider the fuzzy equivalence
E(x,y) = ϕ−1(1−|ϕ(x)−ϕ(y)|) defined in Proposition
2, where ϕ is an automorphism of the unit interval.
Suppose µ(x) = 1− 1

2 x, then we have f (A,B)(x) =

1− 1
2ϕ
−1(1− |ϕ(A(x))−ϕ(B(x))|). Consider the fol-

lowing fuzzy entropy:

e1(A) =
2
n

n∑

i=1

min(A(xi),1−A(xi)).

By Proposition 11, we obtain the following similar-
ity measure:

N6(A,B) =
1
n

n∑

i=1

ϕ−1(1− |ϕ(A(xi))−ϕ(B(xi))|).

Note that N6 is a similarity measure constructed in
7.

Let E be a fuzzy equivalence, λ a strictly in-
creasing function from [0,1] to [0, 1

2 ] with bound-
ary conditions λ(0) = 0,λ(1) = 1

2 . For fuzzy sets
A and B, we define g(A,B) ∈ F(X), for all x ∈ X,
g(A,B)(x) = λ(E(A(x),B(x))), then we have the fol-
lowing conclusion.

Proposition 12. Given a discrete universe X =

{x1, x2, . . . , xn}. Let e be a fuzzy entropy, N a function
defined for all A,B ∈ F(X) by N(A,B) = e(g(A,B)),
then N is a similarity measure.

Proof. It can be proved in the same manner with
Proposition 11.

Let E be a fuzzy equivalence satisfying E5 and
E6, µ and λ the functions defined as above. For
fuzzy set A, we define p(A),q(A) ∈ F(X), for all
x ∈ X, p(A)(x) = f (A,Ac)(x) = µ(E(A(x),Ac(x))),
q(A)(x) = g(A,Ac)(x) = λ(E(A(x),Ac(x))). By the
definitions of µ and λ we know that q(A)(x) 6
p(A)(x) for all x ∈ X, i.e., q(A) ⊆ p(A). We have the
following conclusion.

Proposition 13. Given a discrete universe X =

{x1, x2, . . . , xn}. Let N be a similarity measure satisfy-
ing N5 and N6, e a function defined for all A ∈ F(X)
by e(A) = N(p(A),q(A)), then e is a fuzzy entropy.

Proof.

(EP1) (Necessity) If N(p(A),q(A)) = e(A) = 0, then
by N5, p(A)∩ q(A) = ∅. Since q(A) ⊆ p(A),
we have q(A)(x) = λ(E(A(x),Ac(x))) = 0 for all
x ∈ X. Since λ is a strictly increasing function
satisfying λ(0) = 0, then E(A(x),Ac(x)) = 0. As
E satisfies E6 we have A(x) = 1 or A(x) = 0.
Therefore, A is nonfuzzy.

(Sufficiency) If A is nonfuzzy, then we have
A(x) = 1 or A(x) = 0 for all x ∈ X. Thus
E(A(x),Ac(x)) = 0. This means that q(A)(x) =

λ(0) = 0, p(A)(x) = µ(0) = 1 for all x ∈ X.
Therefore, q(A) = ∅, p(A) = X. We have e(A) =

N(p(A),q(A)) = N(X,∅) = 0.

(EP2) (Necessity) If N(p(A),q(A)) = e(A) = 1, then
by N6, p(A) = q(A). Therefore, p(A)(x) =

µ(E(A(x),Ac(x))) = λ(E(A(x),Ac(x))) =

q(A)(x) for all x ∈ X. By the properties of
µ and λ, we have E(A(x),Ac(x)) = 1. As E
satisfies E6 we have A(x) = Ac(x), that is to
say, A(x) = 1

2 .

(Sufficiency) If A = [ 1
2 ], then A(x) = 1

2 for all
x ∈ X. Thus we conclude that E(A(x),Ac(x)) =

E( 1
2 ,

1
2 ) = 1. This means that q(A)(x) = λ(1) =

1
2 , p(A)(x) = µ(1) = 1

2 for all x ∈ X. Therefore,
p(A) = q(A), e(A) = N(p(A),q(A)) = 1.

(EP3) For x ∈ X, if A(x) > B(x) > 1
2 , then Ac(x) 6

Bc(x) 6 1
2 , thus Ac(x) 6 Bc(x) 6 1

2 6 B(x) 6
A(x). By E4 we have E(A(x),Ac(x)) 6
E(B(x),Bc(x)). By the properties of µ and
λ, λ(E(A(x),Ac(x))) 6 λ(E(B(x),Bc(x))) 6
µ(E(B(x),Bc(x))) 6 µ(E(A(x),Ac(x))). This
means that q(A) ⊆ q(B) ⊆ p(B) ⊆ p(A).
Thus N(p(A),q(A)) 6 N(p(B),q(A)) 6
N(p(B),q(B)). That is to say, e(A) 6 e(B).
The case of A(x) 6 B(x) 6 1

2 can be proved
similarly.

(EP4) Since p(A) = p(Ac), q(A) = q(Ac), then e(A) =

N(p(A),q(A)) = N(p(Ac),q(Ac)) = e(Ac).
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Remark 3.

(1) In the conditions of Proposition 13, let
µ(x) = 1 − 1

2 x, λ(x) = 1
2 x, E(x,y) = 1 − |x −

y|n, then we have p(A)(x) =
1+|A(x)−Ac(x)|n

2 ,
q(A)(x) =

1−|A(x)−Ac(x)|n
2 . Thus the fuzzy en-

tropy N(p(A),q(A)) is in accord with the one
given by Zeng et al. 32 .

(2) In conditions of (1), if n = 1, then we have
p(A)(x) =

1+|A(x)−Ac(x)|
2 = max(A(x),Ac(x)),

q(A)(x) =
1−|A(x)−Ac(x)|

2 = min(A(x),Ac(x)).
This means that p(A) = A∪Ac, q(A) = A∩Ac.
Thus the fuzzy entropy constructed by simi-
larity measure N can be expressed as N(A∪
Ac,A∩Ac). This is the solution given by Fan
in 13 .

Example 6. Suppose µ(x) = 1 − 1
2 x, λ(x) = 1

2 x,
E(x,y) = ϕ−1(1− |ϕ(x)−ϕ(y)|), where ϕ is an auto-
morphism of the unit interval. Since E is a fuzzy
equivalence satisfying E5 and E6, we have

q(A)(x) = λ(E(A(x),Ac(x)))

=
1
2
ϕ−1(1− |ϕ(A(x))−ϕ(1−A(x))|),

p(A)(x) = µ(E(A(x),Ac(x)))

= 1− 1
2
ϕ−1(1− |ϕ(A(x))−ϕ(1−A(x))|).

Consider the following similarity measure:

N2(A,B) =

∑n
i=1 min(A(xi),B(xi))∑n
i=1 max(A(xi),B(xi))

.

It is shown that N2 satisfies properties N4, N5,
N6, by Proposition 13, we obtain the following
fuzzy entropy:

e2(A) =

∑n
i=1ϕ

−1(1− |ϕ(A(xi))−ϕ(1−A(xi))|)∑n
i=1(2−ϕ−1(1− |ϕ(A(xi))−ϕ(1−A(xi))|))

.

Proposition 14. Given a discrete universe X =

{x1, x2, . . . , xn}. Let N be a similarity measure satisfy-
ing N5 and N6, e a function defined for all A ∈ F(X)
by e(A) = N(A,Ac), then e is a fuzzy entropy.

Proof. It follows from Proposition 13 that this
proposition holds.

4. Relation between subsethood measure and
fuzzy entropy

At first blush, subsethood measure and fuzzy en-
tropy do not seem related. To relate subsethood
measure with fuzzy entropy, Kosko 18 proposed the
following expression: given a subsethood measure
c, the fuzzy entropy e generated by c is defined as
e(A) = c(A∪Ac,A∩Ac) for all A ∈ F(X). For show-
ing the conditions of c for which e can be a fuzzy
entropy, several axiomatizations were given in the
literature. In the previous part of this paper, we have
referred to three concepts of subsethood measure,
that is, VY-subsethood measure, ∗-subsethood mea-
sure, and DI-subsethood measure. It is shown that
all DI-subsethood measure is VY-subsethood mea-
sure and therefore, it is also ∗-subsethood measure.
We know that the three conditions of ∗-subsethood
measure are enough to demand the conditions for the
expression: e(A) = c(A∪Ac,A∩Ac) to fulfill the con-
ditions demanded from fuzzy entropy. Therefore,
we use ∗-subsethood measure to construct fuzzy en-
tropy here.

Proposition 15. Given a discrete universe X =

{x1, x2, . . . , xn}. Let c be a ∗-subsethood measure,
p(A) defined as above. Suppose (p(A))c is the com-
plement of the fuzzy set p(A). If e is a function de-
fined for all A ∈ F(X) by e(A) = c(p(A), (p(A))c), then
e is a fuzzy entropy.

Proof.

(EP1) (Necessity) Since p(A)(x) > 1
2 , then we have

[ 1
2 ] ⊆ p(A). If c(p(A), (p(A))c) = 0, then by C2

of ∗-subsethood measure, we have p(A) = X.
This means that p(A)(x) = µ(E(A(x),Ac(x))) =

1 for all x ∈ X. Thus according to the proper-
ties of µ we have E(A(x),Ac(x)) = 0. As E sat-
isfies E6 we have A(x) = 1 or A(x) = 0. There-
fore, A is nonfuzzy.

(Sufficiency) A is nonfuzzy implies A(x) = 1
or A(x) = 0 for all x ∈ X. This means that
E(A(x),Ac(x)) = 0. Thus p(A)(x) = µ(0) =
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1, p(Ac)(x) = 0, that is to say, p(A) = X.
Therefore, we have e(A) = c(p(A), (p(A))c) =

c(X,∅) = 0.

(EP2) (Necessity) If c(p(A), (p(A))c) = e(A) = 1,
then by C1 of ∗-subsethood measure, p(A) ⊆
(p(A))c. As (p(A))c ⊆ p(A) we have (p(A))c =

p(A). Thus µ(E(A(x),Ac(x))) = 1
2 for all x ∈ X.

According to the properties of µ, we have
E(A(x),Ac(x)) = 1. As E satisfies E5 we have
A(x) = Ac(x), that is to say, A(x) = 1

2 .

(Sufficiency) If A = [ 1
2 ], then A(x) = 1

2 for all
x ∈ X. Thus we conclude that E(A(x),Ac(x)) =

1. This means that p(A)(x) = (p(A))c(x) =
1
2 , i.e., p(A) = (p(A))c. Therefore, e(A) =

c(p(A), (p(A))c) = 1.

(EP3) For x ∈ X, if A(x) 6 B(x) 6 1
2 , then Ac(x) >

Bc(x) > 1
2 , thus A(x) 6 B(x) 6 1

2 6 Bc(x) 6
Ac(x). By E4, we have E(A(x),Ac(x)) 6
E(B(x),Bc(x)). By the properties of µ, we have
1−µ(E(A(x),Ac(x)))6 1−µ(E(B(x),Bc(x)))6
µ(E(B(x),Bc(x))) 6 µ(E(A(x),Ac(x))). This
means that (p(A))c ⊆ (p(B))c ⊆ p(B) ⊆
p(A). By C3 of ∗-subsethood measure,
we have c(p(A), (p(A))c) 6 c(p(B), (p(A))c) 6
c(p(B), (p(B))c). Therefore, e(A) 6 e(B). The
case of A(x) > B(x) > 1

2 can be proved simi-
larly.

(EP4) By the definition of p(A), we have p(A) =

p(Ac). Therefore, e(A) = c(p(A), (p(A))c) =

c(p(Ac), (p(Ac))c) = e(Ac).

Remark 4. In the conditions of Proposition
15, let µ(x) = 1 − 1

2 x, E(x,y) = 1 − |x − y|, then
we have p(A)(x) =

1+|A(x)−Ac(x)|
2 = max(A(x),Ac(x)),

(p(A))c(x) =
1−|A(x)−Ac(x)|

2 = min(A(x),Ac(x)). This
means that p(A) = A∪ Ac, (p(A))c = A∩ Ac. Thus
the fuzzy entropy derived from subsethood measure
c can be expressed as c(A∪Ac,A∩Ac). In this sense,
Kosko’s solution 18 about the relation between fuzzy
entropy and subsethood measure can be brought into
line with our solution.

Example 7. Suppose µ(x) = 1 − 1
2 x, E(x,y) =

ϕ−1( min(ϕ(x),ϕ(y))
max(ϕ(x),ϕ(y)) ), where ϕ is an automorphism of

the unit interval. According to Proposition 3, we
know that E is a fuzzy equivalence satisfying E5 and
E6, then we have

p(A)(x) = µ(E(A(x),Ac(x)))

= 1− 1
2
ϕ−1(

min(ϕ(A(x)),ϕ(1−A(x)))
max(ϕ(A(x)),ϕ(1−A(x)))

),

(p(A))c(x) = 1−µ(E(A(x),Ac(x)))

=
1
2
ϕ−1(

min(ϕ(A(x)),ϕ(1−A(x)))
max(ϕ(A(x)),ϕ(1−A(x)))

).

Consider the following subsethood measure:

c6(A,B) =

∑n
i=1 B(xi)∑n

i=1 max(A(xi),B(xi))
.

It is shown that c6 is a ∗-subsethood measure.
By Proposition 15, we obtain the following fuzzy
entropy:

e3(A) =

∑n
i=1ϕ

−1( min(ϕ(A(xi)),ϕ(1−A(xi)))
max(ϕ(A(xi)),ϕ(1−A(xi)))

)
∑n

i=1(2−ϕ−1( min(ϕ(A(xi)),ϕ(1−A(xi)))
max(ϕ(A(xi)),ϕ(1−A(xi)))

))
.

Let E be a fuzzy equivalence satisfying
E5 and E6, µ and λ the functions defined
as above. For fuzzy sets A and B, we
define k(A,B), l(A,B) ∈ F(X), for all x ∈ X,
k(A,B)(x) = µ(E(A(x),min(A(x),B(x)))), l(A,B)(x) =

λ(E(A(x),min(A(x),B(x)))). Then we have the fol-
lowing conclusion.

Proposition 16. Given a discrete universe X =

{x1, x2, . . . , xn}. Let e be a fuzzy entropy, c a function
defined for all A,B ∈ F(X) by c(A,B) = e(k(A,B)),
then c is a DI-subsethood measure.

Proof.

(C1) (Necessity) If c(A,B) = e(k(A,B)) = 1, by
EP2, we have k(A,B) = [ 1

2 ]. This means
that µ(E(A(x),min(A(x),B(x)))) = 1

2 for all
x ∈ X. Since µ is a strictly decreas-
ing function and µ(1) = 1

2 , then we have
E(A(x),min(A(x),B(x))) = 1 for all x ∈ X. As
E satisfies E5 we have A(x) = min(A(x),B(x)),
thus A(x) 6 B(x) for all x ∈ X.
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(Sufficiency) If A ⊆ B, then k(A,B)(x) =

µ(E(A(x),A(x))) = µ(1) = 1
2 , that is to say,

k(A,B) = [ 1
2 ]. Therefore, c(A,B) = e([ 1

2 ]) = 1.

(C2) (Necessity) If e(k(A,Ac)) = c(A,Ac) = 0, then
by EP1, k(A,Ac) is nonfuzzy. There-
fore, k(A,Ac)(x) = 1 or 0. By the def-
inition of k(A,B), we know k(A,B)(x) >
1
2 . Thus k(A,Ac)(x) = 1 for all x ∈
X. This means that µ(E(A(x),min(A(x),1 −
A(x)))) = 1. By the properties of µ, we
have E(A(x),min(A(x),1 − A(x))) = 0. If
A(x) 6 1

2 , then E(A(x),min(A(x),1− A(x))) =

E(A(x),A(x)) = 1 , 0. Thus we conclude that
A(x) > 1

2 for all x ∈ X. Thus E(A(x),1 −
A(x)) = 0. As E satisfies E6 we have A(x) = 1
for all x ∈ X.

(Sufficiency) If A = X, then k(A,Ac)(x) =

µ(E(1,0)) = µ(0) = 1. Thus k(A,Ac) = X.
Therefore, c(A,Ac) = e(k(A,Ac)) = e(X) = 0.

(C3) Since A ⊆ B implies A(x) 6 B(x) for all x ∈ X,
then for any fuzzy set C, three cases will be
considered depending on the position of C(x).

(1) If A(x) 6 B(x) 6 C(x), then k(B,C)(x) =

µ(E(B(x),B(x))) = µ(1) = 1
2 , k(A,C)(x) =

µ(E(A(x),A(x))) = µ(1) = 1
2 for x ∈ X.

Thus, k(B,C)(x) = k(A,C)(x).

(2) If C(x) 6 A(x) 6 B(x), then k(B,C)(x) =

µ(E(B(x),C(x))), k(A,C)(x) = µ(E(A(x),C(x)))
for x ∈ X. According to E4, we con-
clude that E(B(x),C(x)) 6 E(A(x),C(x)).
As µ is strictly decreasing we have
µ(E(B(x),C(x))) > µ(E(A(x),C(x))).
Thus, k(B,C)(x) > k(A,C)(x).

(3) If A(x) 6 C(x) 6 B(x), then k(B,C)(x) =

µ(E(B(x),C(x))), k(A,C)(x) = µ(E(A(x),A(x)))
for x ∈ X. Since E(B(x),C(x)) 6
E(A(x),A(x)) = 1 and µ is strictly de-
creasing, then we have µ(E(B(x),C(x)))>
µ(E(A(x),A(x))). Therefore, k(B,C)(x) >
k(A,C)(x).

Hence we can conclude that k(B,C)(x) >
k(A,C)(x) > 1

2 for all x ∈ X. Then by EP3
we have e(k(B,C)) 6 e(k(A,C)), i.e., c(B,C) 6

c(A,C). The case of c(C,A) 6 c(C,B) when-
ever A ⊆ B can be proved similarly.

Example 8. In the conditions of Proposition 16, let
µ(x) = 1− 1

2 x, E(x,y) = ϕ−1( min(ϕ(x),ϕ(y))
max(ϕ(x),ϕ(y)) ), where ϕ is

an automorphism of the unit interval, then we have
k(A,B)(x) = 1− 1

2ϕ
−1(ϕ(min(A(x),B(x)))

ϕ(A(x)) ). Consider the
following fuzzy entropy:

e1(A) =
2
n

n∑

i=1

min(A(xi),1−A(xi)).

By Proposition 16, we obtain the following DI-
subsethood measure:

c7(A,B) =
1
n

n∑

i=1

ϕ−1(
ϕ(min(A(xi),B(xi)))

ϕ(A(xi))
).

Proposition 17. Given a discrete universe X =

{x1, x2, . . . , xn}. Let e be a fuzzy entropy, c a function
defined for all A,B ∈ F(X) by c(A,B) = e(l(A,B)),
then c is a DI-subsethood measure.

Proof. It can be proved in the same manner with
Proposition 16.

Corollary 18. The subsethood measures constructed
by fuzzy entropy in the above-mentioned proposi-
tions are also VY-subsethood measures and there-
fore, they are also ∗-subsethood measures.

5. Conclusions

On the basis of the definition of similarity mea-
sure proposed by Wang 26, the definition of VY-
subsethood measure 30, ∗-subsethood measure 11

and DI-subsethood measure 4, and the definition
of fuzzy entropy introduced by De Luca and Ter-
mini 9, we have investigated the relations among
similarity measure, subsethood measure and fuzzy
entropy. We also have presented several proposi-
tions that similarity measure, subsethood measure
and fuzzy entropy can be transformed by each other
based on their axiomatic definitions. It is shown that
the results obtained in the literature can be brought
into line with the present work.
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