

Trusted Bytecode Virtual Machine Module:

A Novel Method for Dynamic Remote Attestation in Cloud Computing

Songzhu Mei, Zhiying Wang, Yong Cheng, Jiangchun Ren, Jiangjiang Wu, Jie Zhou

School of Computer, National University of Defense Technology, 410073, Changsha, Hunan, P.R.China
{sz.mei, zywang, ycheng, jcren, jiangwu, jiezhou}@nudt.edu.cn

www.nudt.edu.cn

Abstract

Cloud computing bring a tremendous complexity to information security. Remote attestation can be used to

establish trust relationship in cloud. TBVMM is designed to extend the existing chain of trust into the software

layers to support dynamic remote attestation for cloud computing. TBVMM uses Bayesian network and Kalman

filter to solve the dynamicity of the trusted relationship. It is proposed to fill the trust gap between the infrastructure

and upper software stacks.

Keywords: bytecode virtual machine, trusted computing, cloud computing, remote attestation, Bayesian network.

1. Introduction

Cloud Computing has generally emerged as one of the

most influential technologies in both the IT industry and

academia. Cloud computing, as the Salesforce’s

definition, is a friendlier mode for business operation. It

is rapidly revolutionizing the way IT resources are

managed and utilized1. Cloud computing endows itself a

lot of outstanding characteristics, such as on-demand

self-service, ubiquitous network access, resource

pooling, rapid elasticity and measured service2.

Cloud computing, as a novel computing resource

organizing methods, can provide scalable, flexible and

unlimited storage service. The most significant change it

brings to the users is that the cloud service providers can

provide the consumers a high-performance, high-

efficiency and pay-as-you-go computing capability.

Consumers can not only use the cloud service as a data

storage space, but also a platform on which to deploy

and manage their business processes.

In Ref. 2, the National Institute of Standards and

Technology (NIST) has proposed that cloud model is

composed of three service models.

 Software as a Service (SaaS). The capability

provided to the consumer is to use the provider’s

applications running on a cloud infrastructure. The

consumer does not manage or control the

underlying cloud infrastructure.

 Platform as a Service (PaaS). The capability

provided to the consumer is to deploy consumer-

created applications using programming languages

and tools supported by the provider. The consumer

only has control over the consumer-deployed

applications and the configurations of the hosting

environment.

 Infrastructure as a Service (IaaS). The capability

provided to the consumer is to provision

fundamental computing resources where the

consumer is able to deploy and run arbitrary

software including operating systems and

applications. The consumer has control over

operating systems, storage, and deployed

applications.

Companies can choose any of above models to

deploy their applications according to the functionally

and security concerns. Obviously, the IaaS model can

provide most security assurance to the consumer,

because it is more convenient for the users to enforce

their own security mechanisms and policies. Ref. 3 and

4 has been designed to enhance the business processes’

security in the IaaS environment and users can trust

cloud-based applications built on it. However, when

using the former two service models, consumers can

International Journal of Computational Intelligence Systems, Vol. 5, No. 5 (September, 2012), 924-932

Published by Atlantis Press
 Copyright: the authors
 924

Administrateur
Texte tapé à la machine
Received 30 November 2011

Administrateur
Texte tapé à la machine
Accepted 19 June 2012

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine

Songzhu Mei et al.

hardly control the applications completely. Recently,

most trust relationship established in cloud environment

is social trust5. Social trust is a trust that arises between

two entities based upon social relationships. For

example, a consumer can trust Google App Engine

(GAE) for the reputation of Google Corporation. But no

one can guarantee that there is no design flaw in GAE,

so there must establish some kinds of technical trust to

provide secure assurance in a determinate way.

Trusted Computing Group (TCG), proposed a set of

hardware and software technologies to enable the

construction of trusted platforms6. In particular, the

TCG proposed a standard for the design of the trusted

platform module (TPM) chip. TPM can be used as a

reliable root of trust for measurement (RTM), root of

trust for reporting (RTR), and root of trust for storage7

(RTS). With the help of TPM, a computing platform can

build store and report a trust chain from the lower BIOS

to upper OS-kernel. It endows remote party the ability

to perform remote attestation6. A remote party can

easily attest the platform’s configuration of hardware

and software by checking the value of platform

configuration register (PCR) in the TPM.

Nowadays, with the rapid development of the cloud

computing, a lot of technologies have been proposed to

fulfill the need for the trust in the cloud environment. In

Refs. 3-5, different kinds of trusted platform have been

designed to assure the trust relationship between the

consumers and providers. But most of these

technologies are applied to the IaaS model, and they can

have little benefits on the SaaS and PaaS model. PaaS

and SaaS models place several software layers on IaaS.

These software may include development tool chain,

runtime libraries, and abundant applications, and they

bring the system more complexity. It will be a hard job

to measure all the applications’ binary image, not to say

their runtime states. This problem will be amplified

when these two models introduce Java Virtual Machine

(JVM) or .Net common language runtime (CLR)

executive engine as their runtime platforms. The actual

application is the bytecode for these virtual machines.

The underlying OS will simply handle the application as

an input file of the executive engines. Although in Ref.

8, Biba has announced that when considering the

application’s integrity, we cannot ignore the integrity of

the application’s runtime data. Sailor et al. point that it

is a mission impossible for an attestation system to do

so many jobs at the same time9.

In this paper, we propose the Trusted Bytecode

Virtual Machine Module (TBVMM). It is a well-

designed software module that leveraging the advances

of trusted computing technologies to support the remote

attestation of high-level program properties and

behaviors. Providers can embed TBVMM into BVM as

the trust root. In this situation it extends the trust chain

to the runtime platform for the applications. TBVMM

has three significant advantages:

 User-involved trust management. SLA clarifies the

functional constraints in a formal way. According

to the SLA, TBVMM will configure the policy

decision point (PDP) and the policy enforcement

point (PEP). PDP and PEP will decide and enforce

the security policy to protect users’ applications and

data.

 Virtual memory shielding. To enhance the security

of the BVM and its applications, BVM should

encrypt its built-in virtual memory. With the

supports of TBVMM, BVM can communicate with

the underlying TPM and maintain the memory-

shield key in the TPM to avoid the risk of key

leakage.

 Dynamic remote attestation. TBVMM will monitor

the states-transition of each component in the

container. If the component violates the rule or

functional constraint established between the

consumer and provider, TBVMM will record and

report the threats to the consumers and lower the

trust level of the provider.

The rest of the paper is organized as follows.

Section II introduces the background of bytecode virtual

machine, trusted computing, remote attestation, and

shows our design motivation. Then we provide the main

ideas and design details of TBVMM in Section III.

Section IV overviews the related work. Finally and at

last Section V gives the concluding remark of the whole

paper and the outlook of our work.

2. Background

2.1 Bytecode Virtual Machine

The BVM is a branch of high-level language virtual

machine (HLL VM). It uses a set of unified well-

defined bytecode as its machine instruction and

emulates a simple machine to execute bytecode. BVM

maintains a slice of memory space for the executing

bytecode. BVM packages core system function into its

Published by Atlantis Press
 Copyright: the authors
 925

 Trusted Bytecode Virtual Machine

own libraries and the bytecode can only access the

physical machine’s memory and the essential I/O

devices. So native interface are introduced to let BVM

applications interact with the irregular periphery devices.

Native interface also bring some threats to the physical

machine. An elaborated malicious BVM application

could get full control over the physical machine with the

native interface. So most BVMs have built-in sandboxes,

a constrained executive environment without any

permission to access the physical resources,

unauthorized applications will be moved into the

sandbox to mitigate potential harms. The architecture of

a typical BVM is shown in Fig. 1.

BVM-like virtual machines have been widely used

in the IT industry. JVM is a classical BVM

implementation. We can find it almost everywhere in

our human society, from server-side applications to

mobile device applications. Especially in the PaaS and

SaaS cloud model, JVM is adopted as the fundamental

runtime environment for upper applications. GAE has

used the JVM as its standard program execution

platform, which is not only a support for Java language,

but also other programming languages, such as Python,

Ruby and PHP. Program can be compiled into JVM

bytecode and then run on it without any obstacle.

Salesforce.com also uses JVM to deploy its CRM

applications and provision them to the consumer in a

SaaS manner. In Microsoft’s Azure project, CLR is also

used as a unified runtime platform for C#, Java, and

even C/C++ (with just-in-time mechanism) languages.

In consideration of the above reasons, BVM can be

used as a junction which connects the existed trusted

mechanism with various applications. So we propose

TBVMM, combined with other technologies, to

establish an integrated dynamic trusted executing

environment.

2.2 Trusted Computing and Remote Attestation

Trusted computing wants to add components and

mechanisms to commodity systems to bestow on them

some of the properties of high-assurance closed systems

like ATM. It requires three core mechanisms7:

 Secure boot. Make sure that the system is booted

into a trusted operating system that adheres to some

given security policy.

 Strong isolation. Prevent the system from being

compromised after it has been booted, and to

prevent applications from tampering with each

other.

 Remote attestation. Certify the authenticity of

software being run by a remote party.

The remote attestation is used to attest the

configuration of an entity to a remote entity. This

procedure is widely used to get integrity information

before a client proceeds with the communication in

order to use a service or receive data, e.g., digital

content. This mechanism is referred as integrity

reporting and can be applied in many scenarios and

different applications.

The basic assumption of remote attestation is trusted

server, and untrusted (even malicious) clients. Thus,

even though a significant fraction of work is done at the

clients, all the trust resides at the server. In conventional

C/S or B/S deployment model, this assumption work

well. But in the era of cloud computing, everyone can

publish service for the public. These services may be

well-designed. They also can have plenty of flaws and

even be designed for malicious usage. The assumption

for the conventional remote attestation method cannot

fit cloud computing’s needs well.

Another significant shortcoming is that the remote

attestation is always static. It measures only the binary

image of an application. This is an ―all or nothing‖

manner. This manner is not suitable for a service-side

application. Its availability cannot be assured. It is also a

burden to do upgrade and patching for an application.

3. Trusted Bytecode Virtual Machine

The most significant shortcomings of traditional ways

of remote attestation can be traced back to one root

cause — what is desired is attestation of the behavior of

BVM runtime library
BVM API

Native interface (dynamic link library or shared object)

Host machine resources (file system, network, I/O devices et al.)

BVM sandbox

V
ir

tu
al

 m
e

m
o

ry Authenticated
application

applicationAuthenticated
application

BVM Environment

Restricted access

Denied access

Fig. 1. Typical BVM architecture.

Published by Atlantis Press
 Copyright: the authors
 926

Songzhu Mei et al.

software running on a remote machine, but what

actually gets attested is an individual binary is being

run10. In fact, even if the consumer clearly knows what

application is being used exactly, he has no awareness

about what the application really does. Use email

service as an example. Suppose company D runs a

popular email service, named DMail. When we use a

DMail, the attester may show us that we are indeed

interacting with a correct and non-tampered DMail

server, and what is running in the server is absolutely

the DMail service. Then we write letters and click send

button. We may take for granted that our letter would

have been immediately transported to the receiver

without any error and leakage happen. But as a matter

of fact, we have had no idea on what have been done in

the DMail server. The situation would turn even worse

in cloud environment. Especially the PaaS and IaaS

cloud models that the consumers are allowed to publish

their own services in the cloud.

We present the trusted bytecode virtual machine

module (TBVMM) that provides a closed box execution

environment by extending the concept of trusted

computing platform to an entire PaaS and SaaS models.

The TBVMM guarantees the runtime integrity and

behavior compliance of a server-side application.

3.1 The Requirements for TBVMM

There are some essential requirements for TBVMM to

fulfill the need for dynamic runtime remote attestation

in cloud environment.

 Memory sealing. A batch of technologies has been

developed to crack BVMs. Crackers have shown

their excellent skills to break into the JVM’s

nutshell. The built-in virtual memory, although

announced to be well-protected, is an important

vulnerability for the crackers to leverage. TBVMM

must have its memory protected in a cryptographic

method with the underlying trusted environment.

 User-defined security policy. TBVMM shall

support the users to define and enforce their

security policy. TBVMM can dynamically monitor

and evaluate the applications’ behavior. Any

violation should be recorded and reported to the

user. TBVMM will also help the user to do the up-

front trust-degree evaluation of an application.

 Dynamic remote attestation. TBVMM encourages

application vendors to modularize their applications.

Modularization can significantly reduce the states-

space complexity of an application. So TBVMM

can dynamically monitor the modules’ states-

transition more efficiently. TBVMM, in company

with sandbox, can also test a service according to

its vendor’s formal description, e.g. WSDL * in

Web Service.

3.2 TBVMM Architecture

Fig. 2 illustrates the architecture of TBVMM. A

TBVMM at least has six core components and three

derived configurable utilities. The components include:

 User Policy Analyzer (PA). This component parses

the user defined security policy using XACML, and

generates policy description in a formal and

semantic way. The policy description will then be

used to configure the derived utilities.

 Encryption Module (EM). This component interacts

with the underlying TPM to maintain the memory-

shielding keys. Each application has its own

memory access key, so we can strongly ensure the

memory protection.

 Pre-load Tester (T). This component works with

sandbox. When a consumer tries to publish its

application as a public service, the first-thing-first

to do is to submit a description of its application.

The tester will test and record its states-transition

for users to evaluate its compliance with their

security policy.

 Logger/Reporter (LnR). In company with

underlying TPM, this component logs the

application’s activities securely, and can respond

the users’ attest requests.

 Runtime Attester (RA). This is the most important

component in TBVMM. It attests the application’s

behavior with the help of PDP, PEP, and access

monitor. It detects violations and reports them to

the users through the reporter, and re-evaluates the

trustworthy of an application to help user adjusting

their security policy.

 Trusted-Degree Calculator (TDC). Traditionally

trusted computing take the relationship of trust as

an all-or-none problem. But trust, in the real world,

is a dynamic, on-changing relationship. One will

trust another at some extent in some situation, but

don’t trust the same entity in some other situation.

We use this component to measure the application’s

trusted-degree in a dynamic way using some

machine-learning methods, based on the history of

* Web Services Description Language

Published by Atlantis Press
 Copyright: the authors
 927

 Trusted Bytecode Virtual Machine

interaction between the users and service providers

and some other clues.

Three derived utilities are PDP, PEP and access

monitor (AM). For each application/user pair, a set of

these utilities is prepared to enforce the user’s security

policy. PDP directs the policy enforcement of PEP and

access monitor. PEP will monitor the invoking of an

application to the BVM runtime libraries. According to

the user’s policy, which is decided by PDP, PEP will

deny the invoking that violates the expectations of the

users. For example, the user can specify the work path

to an application. The application should only get access

to the specified path. If not, PEP will deny this access

request and call RA to report this violation.

The AM does the similar thing with the PEP, except

for the AM monitors the native interface invoking.

Some applications may call the native interface directly

without using the runtime libraries. Still, we cannot

totally trust the BVM’s runtime libraries and. These

libraries may have design pitfalls or even be hacked.

Once a tamped BVM API calls a native interface with a

distorted parameter, we cannot confine the application’s

behavior. So we need to pay lots of attention to restrict

the native interface.

3.3 Remote Attestation with TBVMM

In this section we will specify what attestation can be

done with TBVMM, and how attestations are operated.

TBVMM can do nothing to attest the binary code

statically. It is designed for attesting the runtime

behavior of an application. We use the TBVMM and its

associated BVM (including BVM’s standard libraries)

as the trusted computing base (TCB). TPM should

extend its trust chain from OS-level to this TCB.

TBVMM’s main objects include:

 Static properties of applications. Users may prefer

the applications they used to implement some

specific classes or interfaces. These classes of

interface may provide the users some important

function to fulfill their security or performance

needs. So before launching the application,

TBVMM can attest the application with vendor’s

description. After this procedure, the attestation

requesters will be sure about whether the

application is compatible with their needs.

 Dynamic properties of applications. The application

being attested runs under complete control of a

TBVMM. Thus, a TBVMM can attest to dynamic

properties. This includes the runtime state of the

program and properties of the input of the program.

Any violations will be reported to the user, user can

adjust their security policy according to the

application’s behavior. Change of an application

will cause the degradation of its trusted degree

rather than execution halt.

 Specified properties of runtime environments. As

mentioned before, TBVMM can monitor the

application’s working path. Also, it can monitor

other environment properties for attestation

requesters, e.g. the destination of a network

communication, and the peripheral devices being

used when the application is running. We can even

attest whether a specific protocol (e.g. SSL) has

been implemented in the host system. This feature

can provide the users a comprehensive vision of the

applications.

3.4 Bayesian-Based Trusted-Degree Estimate

Trust is a hypothesis about a future behavior. It must be

inferred with the current state of the application, the

behaviors we now captured, and the policy the

application must confine, et. al.. When estimate the

future, we must take into account the non-fulfillment of

the information, and the uncertainty of knowledge.

Therefore we adopt the Bayesian approach as the basic

trusted-degree estimating method.

A Bayesian network is an appropriate model which

provides a statistic method to calculate the probability

Encryption
Module

User
Policy

Analyzer

Pre-load
Tester

Runtime
Attester

Logger/
Reporter

PDP

PEP

BVM runtime lib

XACML

App

Policy

Access Monitor

Native Interface

WSDL

TPM

TBVMM Perimeter

Trusted-
Degree

Calculator

Fig. 2. TBVMM Architecture

Published by Atlantis Press
 Copyright: the authors
 928

Songzhu Mei et al.

of a hypothesis under different conditions. The

theoretical background of Bayesian network is the rule:

P(h j c) = P(c j h)£P(h)=P(c)P(h j c) = P(c j h)£P(h)=P(c)

P(h j c)£P(c) = P(c j h)£P(h)P(h j c)£P(c) = P(c j h)£P(h)

For estimating the trust-degree of an application, we

build a three-level Bayesian network. As depicted in Fig.

3, the root node of the Bayesian network represents the

overall trusted-degree T of an application. The trusted-

degree T 2 [0;1]T 2 [0;1], where 0 means the application cannot

be trusted at all and 1 means the application can be

totally trusted. The children-nodes of the root node

represent the basic beliefs of the application. In our

model, they are trust of behavior (TOB), trust of state

(TOS) and trust of policy confine (TOP). The leaf nodes

of the Bayesian network are fine-grinded belief source

including most important runtime properties of the

application and BVM, the API invoking and each policy

described in XACML document.

We can calculate the trusted-degree of the applica-

tion using these formulas:

Tapp =
P

1·l·3 Wl £TBl
Tapp =

P
1·l·3 Wl £TBl

TBl
=

P
1·m·i Wli £TSlm

TBl
=

P
1·m·i Wli £TSlm

In the formulas above, WiWi is the weight of each

basic belief and WijWij represents the weight of every

belief source.

When estimating the trusted-value of a belief source,

we use Kalman filter18 as the basic mathematic tool.

Kalman filter separates the trusted-value estimate into

two main phases: Prediction, the state model accounts

for the inertia and the erosion of trust based on the

propagation of the present trust state, and Correction,

the system proposes a revision of the trust state from

new observations.

We use P(xk+1 j xk)P(xk+1 j xk) as the Kalman filter’s state

model, where xkxk is the state of a belief source. So we

can model the trusted-value estimating process of a

belief source with the formulas below:
Tk+1i

= P(Tki
)£P(Tki

j xk+1)£P(xk+1 j xk)Tk+1i
= P(Tki

)£P(Tki
j xk+1)£P(xk+1 j xk)

P(xk j Tki
) = P(xk)P(xk j Tk¡1i

)P(xk j Tki
) = P(xk)P(xk j Tk¡1i

)

The former one is the prediction process and the

latter is the correction process.

With the help of Kalman filter, we can make sure

the trusted-degree estimation process itself is trusted

and controllable.

3.5 Implementation and Test Results

Our implementation is based on the Java Virtual

Machine. We used the OpenJDK version 7, running on a

quadracore Intel Core-i5 2.66 GHz machine with 4 GB

of RAM.

We implemented the six components as several

individual modules and expose a set of API for users to

invoke these functions. All JVM instances shared these

modules, a manage module was added to manage the

invoking from different instance. When implement the

EM module, we directly call TPM function to

encrypt/decrypt the memory data then transport them

into JVM’s inner memory to speed up the computation

process.

We modified its class loader to add the static

property-analysis feature into this virtual machine, this

cost about 300 code lines to implement this function.

T

S11

B1

(TOB)
B2

(TOS)
B3

(TOP)

S1i S21 S22 S2j S31 S3k

W11 W1i W21 W22 W2j W31 W3k

W1 W2 W3

Fig. 3 Bayesian network modeling

0

100000

200000

300000

400000

500000

600000

700000

EM turned off EM turned onbytes/s

Fig. 4 Performance comparison for memory access. When the

memory encryption module is turned on, the read/write

performance for every data structure will be almost half as

much as that when EM is turned off.

Published by Atlantis Press
 Copyright: the authors
 929

 Trusted Bytecode Virtual Machine

PDP, PEP, and AM will be embedded into the JVM

instance to monitor its dynamic properties and do

environment attestation.

We did functional and performance test to determine

the achievement of TBVMM. In functional test, we

established the security policy and application

description and run two file encryption applications.

These two applications were implemented with AES

and DES algorithms respectively, and they were

dedicated to work with different workspace. We chose

AES as user’s preferred algorithm in the policy file. In

the experiment, we saw TBVMM can enforce all the

policy restrictions according to our definition. TBVMM

can match our design goal in functional aspect.

We used Java Grande benchmarks to test

performance impact the TBVMM brings to the JVM.

We designed two experiments to do this test. First, we

turned off all the core modules except the ME module to

test memory read/write cost caused by encrypt/decrypt

operations. At the same time, we did not apply any user

defined policy to the TBVMM. In this situation, we run

the Serial benchmark of Java Grande’s Section1

benchmarks. Then we turned off all the core modules

and do run the benchmark again. Fig. 4 gives out the

tested results. We can see that when EM is turned on,

there are significant impacts on the memory-access

ability.

Second, we turned on the RA and PA modules and

specified the work path of JVM’s to the Java Grande’s

root path. We then did a test with the Section3

benchmarks, which need access the class file contained

in Java Grande’s root path. The same experiment was

done when RA and PA were turned off. Fig. 5 depicts

the result of this experiment.

In cloud environment, multi-users can access the

cloud resource in a simultaneous way. So we did some

tests to estimate the TBVMM’s dynamic concurrency.

We run a Tomcat servlet container on original JVM and

our JVM respectively and use Loadrunner to do this test.

In Fig. 6, we can find that the original JVM has a better

response time than our TBVMM armed JVM. When the

number of the virtual users rises to 600, our TBVMM

causes a significant performance reduction. And the

corresponding number of the original JVM is 800.

These modules bring a not to be neglected

performance cost to the JVM. It is obvious that they are

TBVMM’s performance bottlenecks. When we turned

on all the protection mechanism, the JVM’s

performance reduced to about 40 percent of its original

performance. Although we consider that the cost is

valuable for making the system more trustworthy and

secure. We will still pay a lot of attention to the

performance tuning of then TVBMM system.

We also do experiments to evaluate the effect of the

trusted-degree calculator’s. We first turn off the TDC

and do some typical attacks to the BVM, and then we

turn the TDC on and do the same tests. Fig. 7 shows that

when TDC is on TBVMM can detect more potential

risk than its counterpart.

0

1

RA turned off RA turned on

Fig. 5 Performance comparison for user-defined constraints.

When the RA and PA modules are turned on, the file system

access operations will be examined carefully. So it shows a

clear performance loss in this figure..

Fig. 6. Concurrency test result. We can see that comparing

with the pure JVM, TBVMM causes a significant perfor-

mance reduction when the user number get to 600.

Published by Atlantis Press
 Copyright: the authors
 930

Songzhu Mei et al.

4. Related Work

Some research have been done on trusted computing

technology which focus on the improvement of trusted

computing technology itself and the application of

trusted computing technology to distributed systems and

cloud environments.

There is some prior work aims to make the

mechanism of remote attestation more fine-grained,

dynamic. In Ref. 9, Sailer et al. propose an integrity

measurement architecture (IMA) based on TC

technology, which extends the remote attestation

mechanism to the application layer of the system by

maintaining a measurement list in the kernel. Jaeger et

al. use CW-Lite model to reduce the IMA architecture11,

so that only the integrity of the trusted subjects and the

information flow between them will be monitored,

which resolves the problem caused by wrong input data

in IMA. This technology is not suitable to attestation for

web-based applications which are always run on the top

of JVM or CLR. The applications themselves are treated

as the input data of the virtual machines’. But can be

used to measure the TBVMM and BVM in a dynamic

way. Halda et al. propose semantic remote attestation10,

which is very similar to our work. But the semantic

remote attestation does not support users to establish

their security policy, and cannot fit the various

applications in cloud environment. Sadeghi et al.

propose the remote attestation based on properties12. It

provides an alternative to the binary attestation. A

Trusted Third Party (TTP) translates the actual system

configuration into a set of properties and issues

certificates for those properties so that to preserve the

system’s privacy.

How to combine trusted computing with cloud

computing has attracted a great deal of attention

recently. Santos et al. propose TCCP4 a trusted

computing framework for IaaS cloud. TCCP define a set

of protocol for the IaaS cloud to do trusted initialization

and migration of in-cloud virtual machine. Krautheim et

al. propose a private virtual infrastructure (PVI) for IaaS

cloud3. PVI gives users the right of controlling the cloud

infrastructure at some extent, and allows organizations

to utilize cloud resources with the level of assurance

that is required to meet users’ confidentiality concerns.

In Ref. 5, Krautheim et al. introduce a trusted virtual

environment module (TVEM) as the trust root for IaaS

cloud, TVEM helps solve the core security challenge of

cloud computing by enabling parties to establish trust

relationships where an information owner creates and

runs a virtual environment on a platform owned by a

separate service provider. All these researches are focus

on the IaaS cloud model. The need for the trust in PaaS

and SaaS cloud are still overlooked. But they provide us

a trusted infrastructure to do research on. These

technologies can be used to deploy our TBVMM.

TBVMM can be used as their trust extension.

A lot of research have been done to solve the

problem that how to estimate the trust of an agent or a

group of agents. Melaye et al. proposed a Bayesian

dynamic trust model for the computational grid13, but

they only give a theoretical model and did not imple-

ment their model. Wang et al. propose Cloud-dls, a trust

model to make the optimal resource schedule in cloud

environment using Bayesian method14. Sun et al.

proposed an entropy-based trust model for Ad-Hoc

network21. Theodorakopoulos et al. proposed a

semiring-based trust evaluation model and metrics for

Ad Hoc Networks15. Song et al. proposed a fuzzy trust

model for the grid computing system16. But these

methods are all focus on the reputation and peer-to-peer

evaluation in the overall system. They all underestimate

the impact to the trust relationship with the state and

behavior of the agent itself.

0.5

0.55

0.6

0.65

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13

d
e

te
ct

io
n

 r
at

e

time/hour

TDC on TDC off

Fig. 7. Risk detection experiments. With the running time

increased, the TBVMM with TDC turns on can detect more

risk than TBVMM without TDC.

Published by Atlantis Press
 Copyright: the authors
 931

 Trusted Bytecode Virtual Machine

5. Conclusion and Future Work

Conventional ways of remote attestation are based on

cryptography. They suffer from many critical

shortcomings including static, inexpressive, inflexible et

al. Most importantly, they cannot measure program

behavior. They can only attest to the presence of a

particular binary. Existing dynamic remote attestation

technologies can solve some of these problems, but they

are not suitable for cloud computing.

Cloud computing bring a tremendous complexity to

information security. Attesters can hardly do things

efficiently without the help of the cloud environments.

Users may lose their control over their critical data and

business processes. Cloud should give controls back to

the users at some extent. So we propose TBVMM, a

novel mechanism for PaaS and SaaS cloud to fill the

trust gap between the infrastructure and upper software

stacks.

Future work has to be done with other aspects. We

will try to add an enhanced isolation mechanism in our

TBVMM. With this mechanism, vendors can take

advantage of SOA in a more trustable way. This

mechanism is also expected to improve the BVM’s

efficiency when running a big application like CRM and

so on.

Acknowledgements

This work was supported in part by the National Natural

Science Foundation of China (NSFC) under grant

No.60903204.

References

1. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.

Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,

I. Stoica and M. Zaharia, Above the clouds: A Berkeley

View of Cloud Computing, Technical Report
UCB/EECS-2009-28, (EECS Department, University of

California, Berkeley, 2009).

2. P. Mell and T. Grance, The NIST Definition of Cloud

Computing version 15, http://csrc.nist.gov/groups/SNS/
cloud-computing, (National Institute of Standards and

Technology. Gaithersburg, MD, 2009).

3. F. J. Krautheim, Private Virtual Infrastructure for Cloud

Computing. In Proc. 2009 Workshop on Hot Topics in
Cloud Computing. (USENIX Association, Berkley, 2009).

4. N. Santos, K. P. Gummadi and R. Rodrigues, Towards

Trusted Cloud Computing, In Proc. 2009 Workshop on
Hot Topics in Cloud Computing. (USENIX Association,

Berkley, 2009).

5. F. J. Krautheim, D. S. Phatak and A. T. Sherman,

Introducing the Trusted Virtual Environment Module: A

New Mechanism for Rooting Trust in Cloud Computing.

In Proc. TRUST 2010. LNCS, 6101, (Springer,

Heidelberg, 2010), pp. 211–227.

6. Trusted Computing Group. TPM Specification Version

1.2. http://www.trusted-computinggroup.org/resources/
tpm_main_specification. (Trusted Computing Group,

2007).

7. M. Martin, The Ten-Page Introduction to Trusted

Computing. Research Report CS-RR-08-11, (Computing

Laboratory, Oxford University, Oxford, 2008).

8. K. J. Biba, Integrity considerations for secure computer

systems. Technical Report MTR-3153, (Mitre Corpora-

tion, Bedford, 1975).

9. R. Sailer, X. Zhang, T. Jaeger and L. Doorn, Design and

Implementation of a TCG-based Integrity Measurement

Architecture. In Proc. 13th USENIX Security Symposium,

(USENIX Association, Berkley, 2004), pp. 223–238.

10. V. Haldar, D. Chandra and M. Franz, Semantic Remote

Attestation: a Virtual Machine Directed Approach to

Trusted Computing. In Proc. 3rd Conference on Virtual
Machine Research and Technology Symposium,

(USENIX Association, Berkeley, 2004).

11. T. Jaeger, R. Sailer and U. Shankar, Prima: policy-

reduced integrity measurement architecture. In Proc. 11th
ACM symposium on Access control models and
technologies, (ACM Press, New York, 2006), pp. 19–28.

12. A. R. Sadeghi, and C. Stuble, Property-based attestation

for computing platforms: caring about properties, not

mechanisms. In Proc. 2004 workshop on New security
paradigms, (ACM Press, New York, 2004), pp. 67–77.

13. D. Melaye and Y. Demazeau, Bayesian Dynamic Trust

Model, Multi-Agent Systems and Applications, (Springer,

Heidelberg, 2005), pp. 480-489.

14. W. Wang, G. Zeng, D. Tang and J. Yao, Cloud-DLS:

Dynamic trusted scheduling for Cloud computing, Expert
Syst. Appl. 39(3) (2012) 2321-2329.

15. Y. Sun, W. Yu, Z. Han, K. J. R. Liu, Trust Modeling and

Evaluation in Ad Hoc Networks, In Proc. IEEE Global
Telecommunications Conference, (IEEE Press, 2005), pp.

1862-1867.

16. G. Theodorakopoulos and J. S. Baras, On trust models

and trust evaluation metrics for ad-hoc networks, IEEE
Journal on Selected Areas in Communications, 24(2)
(IEEE Press, 2006), pp. 318–328.

17. S. Song, K. Hwang and M. Macwan, Fuzzy Trust

Integration for Security Enforcement in Grid Computing,

Network and Parallel Computing, (Springer Berlin 2004),

pp. 9-21.

18. G. Welch and G. Bishop, An Introduction to the Kalman

Filter, Technical Report 95-041, (Department of

Computer Science, University of North Carolina at

Chapel Hill, 1995).

Published by Atlantis Press
 Copyright: the authors
 932

