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Abstract

In the present paper, we introduce a new axiomatic definition of the inclusion measure for intuitionistic
fuzzy sets (IFSs, for short). The close relationships among entropy, similarity measure, and inclusion
measure of IFSs are then discussed in detail. Also, we obtain some important theorems by which the
entropy, similarity measure and inclusion measure of IFSs can be transformed into each other based on
their axiomatic definitions. Moreover, some formulae for calculating the entropy, similarity measure and
inclusion measure of IFSs are put forward. Finally, we compare the proposed new entropy, similarity and
distance measures with the existing ones.
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1. Introduction

To alleviate some drawbacks of Zadeh’s fuzzy set
(Rf.30), the concept of intuitionistic fuzzy set (IFS)
was first introduced by Atanassov in 1986 (Rf.1)
as an useful generalization of ordinary fuzzy set.
It has been found to be more flexible and practi-
cal to deal with vagueness and uncertainty due to
that intuitionistic fuzzy set can incorporate a hesi-

tation in the membership degree, that is, assign to
each element u of U a membership, a nonmember-
ship and a hesitation degree. After the pioneering
work of Atanassov, the IFS has received much at-
tention from many researchers and has been used
in more wide range of application fields. For ex-
ample, Gerstenkorn (Rf.10) systematically investi-
gated the correlation coefficients of IFSs. Coker
(Rf.6) discussed the intuitionistic fuzzy topologi-
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cal characteristic. Xu (Rf.25) studied the clustering
technique of IFS. Li (Rf.15) proposed some multi-
attribute decision-making methods using IFSs. In
addition, De (Rf.9) applied intuitionistic fuzzy set
to medical diagnosis. Ciftcibasi (Rf.4) introduced
Two-sided (intuitionistic) fuzzy reasoning approach.
Cornelis (Rf.5) studied the implication in intuition-
istic fuzzy theory.

As was well known, the entropy and similarity
measure, and inclusion measure are three important
issues in fuzzy set theory, which have been widely
applied to pattern recognition, cluster analysis, im-
age processing and decision making. With respect
to intuitionistic fuzzy setting, the three concepts still
play significant role in many deployed systems and
application problems involving intuitionistic fuzzy
sets.

The similarity measure of IFSs indicates the sim-
ilar degree of two IFSs and plays an important role
in pattern recognition, approximate reasoning and
decision making. For instance, in (Rf.17) Szmidt
presented a similarity measure of IFSs for support-
ing medical diagnostic reasoning. Later, Xu (Rf.26)
proposed some similarity measures of IFs for multi-
ple attribute decision making. Hung (Rf. 13) also
presented a similarity measure of IFSs based on
Hausdorff metric and applied it to pattern recogni-
tion.

The inclusion measure of fuzzy sets represents
the degree to which a fuzzy set is contained in an-
other fuzzy set. Sinha (Rf.19) first introduced an ax-
iomatic definition of the inclusion measure of fuzzy
sets. Later on, Cornelis (Rf.7) revised sinha’s axiom,
and proposed a inclusion for intuitionistic fuzzy set.
Bustince (Rf.2) investigated the inclusion grade for
interval-valued fuzzy sets. Kehagias (Rf.14) pre-
sented the concept of L-fuzzy valued inclusion mea-
sure , L-fuzzy valued similarity measure, and L-
fuzzy distance.

Entropy, as a measure of fuzziness often used in
the literature, describe the fuzziness degree or un-
certain information of a fuzzy set and is first men-
tioned by Zadeh. It has received great attention
recently. In 1972 (Rf.8) Deluca and Termini pre-
sented some axioms to describe the fuzziness degree
of fuzzy set, with which a fuzzy entropy based on

Shannon’s function was proposed. After that, many
other researchers have studied the fuzzy entropy in
different ways. Especially, Shang in (Rf.20) intro-
duced another new fuzziness measure. For the in-
formation measure of intuitionistic fuzzy set, Szmidt
(Rf.21) proposed an entropy for intuitionistic fuzzy
set by employing a geometric interpretation of IFS.
And Vlachos (Rf.22) studied the intuitionistic fuzzy
information entropy and its application to pattern
recognition. In 2010 Ye (Rf.29) also proposed two
effective measures of intuitionistic fuzzy entropy.
Moreover, Burillo (Rf.3) presented an entropy on
interval-valued fuzzy sets and on intuitionistic fuzzy
sets. And Vlachos (Rf.23) studied the subsethood
and entropy of interval-valued fuzzy sets(IvFSs).
Further Zeng (Rf.31) investigated the relationship
between entropy and similarity measure of IvFSs
from a different point of view. Additionally, we pre-
sented some new entropy formulae of vague set and
interval-valued intuitionistic fuzzy sets, and their re-
lations were then discussed in detail (Rf.32,33,34).

However, by now, although some entropy for-
mulae, similarity measures and inclusion measures
of IFSs have been introduced, and applied to many
real life problems, there is little investigation on their
relationships among them, which may be widely
applied to many fields such as pattern recognition,
cluster analysis, image segment. Therefore, it is
worthwhile to focus on discovering the close rela-
tionships among entropy, similarity measure and in-
clusion measure for IFS. In section 2, we first sum-
marize the axiomatic definitions of entropy, simi-
larity measure and inclusion measure for IFS. Fur-
ther, in section 3, some theorems reflecting the rela-
tionship among the entropy, the similarity measure,
the inclusion measure are obtained, based on which
some new formulae to evaluate entropy and similar-
ity, inclusion measure of IFS are then put forward.
The conclusion is given in the last section.

2. Notations and Preliminaries

Definition 2.1. Lattice (L∗,6L∗ ,∨,∧,′ ) is given by
L∗ = {(u,v) ∈ [0,1]× [0,1]/u+ v 6 1},
(a1,a2) 6L∗ (b1,b2), iff a1 6 b1 and a2 > b2,
(a1,a2) = (b1,b2), iff a1 = b1,a2 = b2,
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(a1,a2)∨ (b1,b2) = (max{a1,b1},min{a2,b2}),
(a1,a2)∧ (b1,b2) = (min{a1,b1},max{a2,b2}),
(a1,a2)′ = (a2,a1), ∀(a1,a2),(b1,b2) ∈ L∗;

and 0L∗ = (0,1), 1L∗ = (1,0) are the smallest and
greatest units of this lattice(Rf.5).

Notably, (L∗,6L∗) is a complete lattice since for
any M ⊆ L∗ we know that
∨M = (max{x ∈ [0,1] | (3 y ∈ [0,1])((x,y) ∈
M)}, min{y ∈ [0,1] | (3 x ∈ [0,1])((x,y) ∈M)})
∈ L∗ ;
∧M = (min{x ∈ [0,1] | (3 y ∈ [0,1])((x,y) ∈
M)}, max{y ∈ [0,1] | (3 x ∈ [0,1])((x,y) ∈M)})
∈ L∗;
and ∨i(ai1,ai2) = (∨iai1,∧ai2),

∧i(ai1,ai2) = (∧iai1,∨ai2), ∀(ai1,ai2) ∈ L∗.

Definition 2.2 (Rf.1). An intuitionistic fuzzy set
(IFS) A in finite universe X = {x1,x2, · · · ,xn} is
a mapping A : X → [0,1] × [0,1], i.e., A(xi) =
(uA(xi),vA(xi))∈ L∗ satisfying 0 6 uA(xi)+vA(xi) 6
1 for any xi ∈ X , where uA(xi),vA(xi) represent the
degree of membership and nonmembership of that
element xi ∈ X to the set A, respectively; and
ΠA(xi) = 1− uA(xi)− vA(xi) represents the hesita-
tion degree of the element xi to set A.
This definition favors IFS as they are readily seen to
be L∗-fuzzy set w.r.t. the lattice L∗.

Throughout this paper, X represents a finite uni-
verse unless specified, and we denote by I F (X)
the set of all intuitionistic fuzzy sets in finite uni-
verse X , P(X) the power set of finite universe X .

Definition 2.3 (Rf.1). Let A,B ∈ I F (X), the
union, intersection, complement and inclusion as
well as equality relation are defined as follows:

A ∪ B = {〈xi,(uA(xi) ∨ uB(xi), vA(xi) ∧
vB(xi))〉| xi ∈ X};

A ∩ B = {〈xi,(uA(xi) ∧ uB(xi), vA(xi) ∨
vB(xi))〉| xi ∈ X};

A′ = {〈xi,(vA(xi), uA(xi))〉| xi ∈ X};
A ⊆ B, iff uA(xi) 6 uB(xi), vA(xi) >

vB(xi)),∀xi ∈ X ;
A = B, iff uA(xi) = uB(xi), vA(xi) =

vB(xi)),∀xi ∈ X .
Hereafter, the notations ∨, ∧ stand for max and min

operations, respectively.

3. Main axiomatic definitions

Definition 3.1(Rf.21). A real function E :
I F (X) → [0,1] is named an entropy of IFSs on
finite universe X , if E satisfies all the following
properties:
(P1) E(A) = 0 if A is a crisp set, ∀A ∈ P(X);
(P2) E(A) = 1 iff uA(xi) = vA(xi), ∀xi ∈ X ;
(P3) E(A) 6 E(B) if A is less fuzzy than B (A¿ B),
which is defined as
uA(xi) 6 uB(xi), vA(xi) > vB(xi), for uB(xi) 6 vB(xi);
uA(xi) > uB(xi), vA(xi) 6 vB(xi), for uB(xi) > vB(xi);
(P4) E(A) = E(A′).
Below, we display two entropy formulae of intu-
itionistic fuzzy set A , which fulfill all the above
conditions (P1−P4).

E1(A) = 1−Σn
i=1|uA(xi)− vA(xi)|/n

E2(A) = 1−
√

Σn
i=1|uA(xi)− vA(xi)|2/n.

Definition 3.2(Rf.17). A real function S : I F (X)×
I F (X)→ [0,1] is named as the similarity measure
of IFSs on universe X , if it satisfies properties:
(S1) S(A,A′) = 0 if A is a crisp set, ∀A ∈ P(X);
(S2) S(A,B) = 1 iff A = B ;
(S3) S(A,B) = S(B,A);
(S4) If A ⊆ B ⊆ C, then S(A,C) 6 S(A,B) and
S(A,C) 6 S(B,C).
For instance, the following similarity measures of
IFSs had been proposed in (Rf.25):

S1(A,B)= 1− 1
2n

Σn
i=1{|uA(xi)−uB(xi)|+|vA(xi)−vB(xi)|};

S2(A,B)= 1−
√

1
2n

Σn
i=1{|uA(xi)−uB(xi)|2 + |vA(xi)− vB(xi)|2}.

Obviously, the above axiomatic definitions of
entropy and similarity measure of IFS are extended
from those of ordinary fuzzy set theory. Thus, if
IFS A in Def 3.1 becomes fuzzy set, then E(A) re-
duces to the corresponding entropy of fuzzy set A;
meanwhile, if IFSs A,B in Def 3.2 become fuzzy
sets, then S(A,B) degenerates to the corresponding
similarity measure of FSs.
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Also, in many real-life problems people usually
need to numerically express the difference of two
objects by means of the distance of the correspond-
ing IFSs. For example, Grzegorzewski (Rf.11) pre-
sented a distance for IFSs based on Hausdorff met-
ric. Szmidt and Kacprzyk (Rf.18) proposed some
distance measures for IFSs and applied to pattern
recognition. Wang (Rf.24) also applied some dis-
tance measures for IFSs to pattern recognition. Xu
(Rf.27) systematically studied various of distance
measures and similarity measures of IFSs. Thus, we
also give the axiomatic definition of distance mea-
sure for IFSs below.
Definition 3.3 (Rf.18). A real function d :
I F (X)×I F (X) → [0,1] is named as the dis-
tance measure of IFSs on universe X , if it satisfies
the properties:
(d1) d(A,A′) = 1 if A is a crisp set, ∀A ∈ P(X);
(d2) d(A,B) = 0 iff A = B ;
(d3) d(A,B) = d(B,A);
(d4) If A ⊆ B ⊆ C, then d(A,C) > d(A,B) and
d(A,C) > d(B,C).
Note that the similarity measure can be deduced by
distance measure as

d(A,B) = 1−S(A,B).
For example:

d1(A,B)=
1

2n
Σn

i=1{|uA(xi)−uB(xi)|+|vA(xi)−vB(xi)|}

d2(A,B)=

√
1

2n
Σn

i=1|uA(xi)−uB(xi)|2 + |vA(xi)− vB(xi)|2

Property 3.1. Assume Si (i = 1,2) is the above-
mentioned similarity measure, then for any IFSs
A,B ∈I F (X), we get
(1) Si(A,B) = Si(A′,B′);
(2) Si(A,B) = Si(A

⋂
B,A

⋃
B).

Property 3.2. Suppose di (i = 1,2) is the above-
mentioned distance measure, then for any IFSs
A,B ∈I F (X), we obtain
(1) di(A,B) = di(A′,B′);
(2) di(A,A

⋂
B) = di(B,A

⋃
B);

(3) di(A,A
⋃

B) = di(B,A
⋂

B).

Moreover, In 2000 (Rf.2) Bustince introduced

an axiomatic definition for the inclusion grade of
the interval-valued fuzzy sets and applied it to ap-
proximate reasoning. For intuitionistic fuzzy set,
Cornelis (Rf.7) also proposed an inclusion measure.
On account of the importance of inclusion measure
in approximate reasoning, pattern recognition, we
extend the subsethood (Rf.12,28] of FSs and intro-
duce the axiomatic definition of inclusion measure
for intuitionistic fuzzy sets based on the principle
of set inclusion, which is different from Cornelis’s
work (Rf.7).
Definition 3.4. A real function I : I F (X) ×
I F (X)→ [0,1] is named as the inclusion measure
of IFSs on universe X , if it satisfies the following
properties:
(I1) I(X ,φ) = 0 ;
(I2) I(A,B) = 1 iff A⊆ B ;
(I3) if A⊆ B⊆C, then I(C,A) 6 I(B,A) and

I(C,A) 6 I(C,B).

Obviously, if the IFSs A,B become fuzzy sets, then
I(A,B) reduces to the subsethood of fuzzy sets.
Now, we give two inclusion measures between IFSs
A,B as below.
I1(A,B) = 1− [ 1

2n Σn
i=1(|uA(xi)−uA∩B(xi)|+

|vA∩B(xi)− vA(xi)|)];
I2(A,B) = 1−√

1
2n Σn

i=1(|uA(xi)−uA∩B(xi)|2 + |vA∩B(xi)− vA(xi)|2).

4. Relationships among entropy, similarity
measure, inclusion measure of IFSs

According to the above discussion, one can notice
that the real functions of entropy, similarity mea-
sure and inclusion measure of IFSs are not unique.
Therefore, in what follows, we will investigate on
some important relationships among the similarity
measure, the distance measure, the inclusion mea-
sure and the entropy of IFSs in detail. And then we
will put forward some novel formulae to calculate
the similarity measure, inclusion measure and en-
tropy of IFSs.
Theorem 4.1. Assume d is a distance measure of
IFSs, for A,B∈I F (X), then S(A,B) = 1−d(A,B)
is a similarity measure of IFSs A and B.
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Proof. The proof is straightforward from Def 3.2
and Definition 3.3.
Example 4.1. For A,B ∈ I F (X), by utilizing the
Hausdorff metric Grzegorzewski (Rf.11) suggested
the following Hamming distance and Euclidean dis-
tance between them:

dh(A,B)=
1
n

Σn
i=1(|uA(xi)−uB(xi)|∨|vA(xi)−vB(xi)|),

de(A,B)=

√
1
n

Σn
i=1(|uA(xi)−uB(xi)|2∨|vA(xi)− vB(xi)|2).

Then from Theorem 4.1 we get the corresponding
similarity measures between IFSs.

Sh(A,B)= 1− 1
n

Σn
i=1(|uA(xi)−uB(xi)|∨|vA(xi)−vB(xi)|),

Se(A,B)= 1−[
1
n

Σn
i=1(|uA(xi)−uB(x)|2∨|vA(xi)−vB(xi)|2)]

1
2 .

Example 4.2. For A,B ∈ I F (X), Szmidt and
Kacprzyk (Rf.17) also proposed the following nor-
malized Hamming distance and Euclidean distance
between them:
d5(A,B) = 1

2n Σn
i=1(|uA(xi)−uB(xi)|∨ |vA(xi)−

vB(xi)|+ |ΠA(xi)−ΠB(xi)|),
d6(A,B) = { 1

2n Σn
i=1(|uA(xi)−uB(xi)|2 + |vA(xi)−

vB(xi)|2 + |ΠA(xi)−ΠB(xi)|2)} 1
2 .

Then from Theorem 4.1 we also get the correspond-
ing similarity measures between IFSs.
S5(A,B) = 1− 1

2n Σn
i=1(|uA(xi)−uB(xi)|∨ |vA(xi)−

vB(xi)|+ |ΠA(xi)−ΠB(xi)|),
S6(A,B)= 1−{ 1

2n Σn
i=1(|uA(xi)−uB(xi)|2 +|vA(xi)−

vB(xi)|2 + |ΠA(xi)−ΠB(xi)|2)} 1
2 ,

where ΠA(xi),ΠB(xi) denote the degree of hesitation
of xi to IFS A, B, respectively.

Theorem 4.2. Assume d is a distance mea-
sure of IFSs, for A ∈ I F (X), if f is a mono-
tonic decreasing function from [0,1] to [0,1], then
E(A) = f (d(A,A′))− f (1)

f (0)− f (1) is an entropy of intuitionistic
fuzzy set A.
Proof. We only need to prove that all the properties
in Def 3.1 hold.
(P1): If A is a crisp set, i.e., A ∈ P(X), and due to

that d is a similarity measure of IFSs, then from def-
inition 3.3, we have d(A,A′) = 1.
Thus E(A) = 0.
(P2): If uA(xi) = vA(xi), ∀xi ∈ X , then we know
uA′(xi) = vA(xi) = uA(xi), vA′(xi) = uA(xi) = vA(xi).
Hence, A′ = A.
So, we get d(A,A′) = 1 by the Definition 3.3 of dis-
tance measure.
Then, E(A) = f (d(A,A′))− f (1)

f (0)− f (1) = 1.
(P3): If A is less fuzzy than B, denoted by A ¿ B,
then we know,
when uA(xi) 6 uB(xi), vA(xi) > vB(xi), for uB(xi) 6
vB(xi);
i.e., uA(xi) 6 uB(xi) 6 vB(xi) 6 vA(xi),
so, A⊆ B⊆ B′ ⊆ A′.
Therefore, by the definition 3.3 of distance measure
of IFSs, we have

d(A,A′) > d(B,A′) > d(B,B′).
Similarly, when uA(xi) > uB(xi), vA(xi) 6 vB(xi),
for uB(xi) > vB(xi);
i.e., uA(xi) > uB(xi) > vB(xi) > vA(xi),
So, A⊇ B⊇ B′ ⊇ A′.
Therefore, by the definition of distance measure of
IFSs we get d(A,A′) > d(B,B′).
Then,
E(A) = f (d(A,A′))− f (1)

f (0)− f (1) 6 f (d(B,B′))− f (1)
f (0)− f (1) = E(B).

(P4): From the definition of distance measure of
IFSs, we know that
for any A ∈I F (X), d(A′,A) = d(A,A′) is trivial .
Hence E(A′) = E(A).

Example 4.3. Let A,B ∈ I F (X), X =
{x1,x2, · · · ,xn}, according to the distance measures
of IFSs proposed in (Rf.16), we have the following
similarity measures of IFSs:
Normalized Hausdorff similarity measure induced
by Hausdorff metric

d∗h(A,B)=
1
n

n

∑
i=1

[(|uA(xi)−uB(xi)|∨|vA(xi)−vB(xi)|)],

Normalized Euclidean similarity measure induced
by Euclidean distance

d∗e (A,B)= { 1
2n

n

∑
i=1

[(uA(xi)−uB(xi))2 +(vA(xi)−vB(xi))2]} 1
2 .
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Then from theorem 4.2, by taking function f (x) =
1− x we immediately obtain that

f (d(A,A′))− f (1)
f (0)− f (1)

= 1− 1
n

n

∑
i=1
|uA(xi)− vA(xi)|,

f (d(A,A′))− f (1)
f (0)− f (1)

= 1−
√

1
n

n

∑
i=1

(uA(xi)− vA(xi))2,

are entropy formulae of IFS A, which correspond to
E1(A),E2(A), respectively.

Theorem 4.3. Suppose S is a similarity measure
of FSs, assume A ∈ I F (X), X = {x1,x2, · · · ,xn},
then S(uA,vA) is an entropy of IFS A, where
uA = 1−uA, vA = 1− vA.
Proof.
(P1): If A ∈ P(X), then for any xi ∈ X ,
uA(xi) = 1, vA(xi) = 0 or uA(xi) = 0, vA(xi) = 1;
i.e., vA(xi) = (uA(xi))′, ∀xi ∈ X .
Since S is the similarity measure of fuzzy sets, we
have S(uA,vA) = S(uA,uA) = 0.
(P2): From the definition of similarity measure, we
immediately have
S(uA,vA) = 1 ⇔ uA = vA ⇔ 1 − uA(xi) = 1 −
vA(xi)⇔ uA(xi) = vA(xi),∀xi ∈ X .
(P3): Since A is less fuzzy than B, then we know,
when uA(xi) 6 uB(xi), vA(xi) > vB(xi), for uB(xi) 6
vB(xi);
i.e., uA(xi) 6 uB(xi) 6 vB(xi) 6 vA(xi),
So, uA ⊆ uB ⊆ vB ⊆ vA.
Known by the definition of similarity measure, we
have S(uA,vA) 6 S(uA,vB) 6 S(uB,vB).
When uA(xi) > uB(xi), vA(xi) 6 vB(xi), for uB(xi) >
vB(xi);
then, uA(xi) > uB(xi) > vB(xi) > vA(xi),
So, uA ⊇ uB ⊇ vB ⊇ vA, and uA ⊆ uB ⊆ vB ⊆ vA .
By the definition of similarity measure, we get
E(A) = S(uA,vA) 6 S(uB,vA) 6 S(uB,vB) = E(B).
(P4): Since A′ = 〈vA,uA〉 and from the definition of
similarity measure, it follows that
E(A′) = S(uA′ ,vA′) = S(vA,uA) = S(uA,vA) = E(A).

In the sequel, we can give some formulae to cal-
culate the entropy of IFS based on some existing
similarity measures of IFSs by Theorem 4.3.
Example 4.4. Suppose A, B ∈ F (X), X =
{x1,x2, · · · ,xn}, there are some widely used simi-

larity measures of FSs as follows(Rf.26):
Hamming similarity measure induced by hamming
distance measure:

S∗1(A,B) = 1− 1
n

n

∑
i=1

(|A(xi)−B(xi)|);

Euclidean similarity measure induced by Euclidean
distance measure:

S∗2(A,B) = 1−
√

1
n

n

∑
i=1

(|A(xi)−B(xi)|2);

Similarity measure from the point of set-theoretic
view:

S∗3(A,B) = ∑n
i=1(min{A(xi),B(xi)})

∑n
i=1(max{A(xi),B(xi)}) ;

S∗4(A,B) =
n

∑
i=1

min{A(xi),B(xi)}
max{uA(xi),uB(xi)} .

Now, suppose A = 〈uA,vA〉 is an IFS. If we use
uA,vA to substitute for A,B in the above similar-
ity measures, respectively, then immediately get the
corresponding entropies of A.

E∗1 (A) = 1− 1
n

n

∑
i=1
|uA(xi)− vA(xi)|,

E∗2 (A) = 1−
√

1
n

n

∑
i=1
|uA(xi)− vA(xi)|2,

E∗3 (A) = ∑n
i=1{1−uA(xi)∨ vA(xi)}

∑n
i=1{1−uA(xi)∧ vA(xi)} ,

E∗4 (A) =
n

∑
i=1

1−uA(xi)∨ vA(xi)
1−uA(xi)∧ vA(xi)

,

where E∗1 (A),E∗2 (A) are the same as the above-
mentioned E1(A),E2(A).
Theorem 4.4. Assume A,B are two IFSs in
X = {x1,x2, · · · ,xn} and for any xi ∈ X , either
A(xi)⊆ B(xi) or B(xi)⊆ A(xi), then for i = 1,2,

E∗i (A)+E∗i (B) = E∗i (A∪B)+E∗i (A∩B) .
Proof. Here, we only prove that E∗1 (A) satisfies the
above equation.

E∗1 (A)+E∗1 (B) = (1− 1
n ∑n

i=1 |uAL(xi)−vAL(xi)|)
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+ (1- 1
n ∑n

i=1 |uB(xi)− vB(xi)|),
E∗1 (A∪B) = 1− 1

n ∑n
i=1 |u(A∪B)(xi)− v(A∪B)(xi)|,

E∗1 (A∩B) = 1− 1
n ∑n

i=1 |u(A∩B)(xi)− v(A∩B)(xi)|.
If A⊆ B, i.e., uA(xi) 6 uB(xi), vA(xi) > vB(xi), then
we have

E∗1 (A∪B) = 1− 1
n ∑n

i=1 |uB(xi)− vB(xi)|,
E∗1 (A∩B) = 1− 1

n ∑n
i=1 |uA(xi)− vA(xi)|,

So, E1(A∪B)+E1(A∩B) = E1(A)+E1(B).
If A⊇ B, i.e., uA(xi) > uB(xi), vA(xi) 6 vB(xi), then
we also have

E∗1 (A∪B) = 1− 1
n ∑n

i=1 |uA(xi)− vA(xi)|,
E∗1 (A∩B) = 1− 1

n ∑n
i=1 |uB(xi)− vB(xi)|,

So, E∗1 (A∪B)+E∗1 (A∩B) = E∗1 (A)+E∗1 (B).
Similarly, we can verify that E∗2 satisfies the above
equation, while E∗3 ,E∗4 do not fulfill.

Next, we further give a transform method of
constructing similarity measure of IFSs based on
the entropy of IFSs in the following.

Definition 4.1. Let A,B be two IFSs in universe
X = {x1,x2, · · · ,xn},
assume A(xi) = 〈uA(xi),vA(xi)〉, and B(xi) =
〈uB(xi),vB(xi)〉,
we can define a new intuitionistic fuzzy set
ψ(A,B) ∈I F (X) from A,B as follows:

uψ(A,B)(xi)=
1
2
(1+min{|uA(xi)−uB(xi)|, |vA(xi)−vB(xi)|});

vψ(A,B)(xi)=
1
2
(1−max{|uA(xi)−uB(xi)|, |vA(xi)−vB(xi)|}).

Theorem 4.5. Let E be an entropy of IFSs, for
A,B ∈ I F (X), then E(ψ(A,B)) is a similarity
measure of IFSs A and B.
Proof. We only need to prove that all the properties
in Definition 3.2 hold.
(S1): If A ∈ P(X), then for any xi ∈ X , we know
uA(xi) = 1, vA(xi) = 0 or uA(xi) = 0, vA(xi) = 1.
Then
uA′(xi) = 0, vA′(xi) = 1 or uA′(xi) = 1, vA′(xi) = 0.
So, uψ(A,A′)(xi) = 1+min{1,1}

2 = 1, ∀xi ∈ X ;

vψ(A,A′)(xi) = 1−max{1,1}
2 = 0, ∀xi ∈ X ;

ψ(A,A′) = {〈xi,1,0〉| xi ∈ X} is a crisp set in X .
From the axiomatic property P1 of entropy E in def-
inition 3.1, we have

E(ψ(A,A′)) = 0.

(S2): Known by the definition of entropy for IFS,
we have

E(ψ(A,B)) = 1
⇔ uψ(A,B) = vψ(A,B)
⇔ min{|uA(xi)−uB(xi)|, |vA(xi)− vB(xi)|}+

max{|uA(xi)−uB(xi)|, |vA(xi)− vB(xi)|}= 0.
⇔ |uA(xi)−uB(xi)|+ |vA(xi)− vB(xi)|= 0.
⇔ |uA(xi)−uB(xi)|= 0, and |vA(xi)− vB(xi)|= 0.
⇔ uA(xi) = uB(xi), vA(xi) = vB(xi), ∀xi ∈ X .
⇔ A = B.
(S3): From the definition of ψ(A,B), we easily know
that
uψ(A,B)(xi) = uψ(B,A)(xi),vψ(A,B)(xi) = vψ(B,A)(xi);
i.e., ψ(A,B) = ψ(B,A).
Thus, E(ψ(A,B)) = E(ψ(B,A)).
(S4): If A⊆ B⊆C, then for each xi ∈ X , we know
uA(xi) 6 uB(xi) 6 uC(xi), vA(xi) > vB(xi) >
vC(xi).
Hence, |uA(xi)−uC(xi)|> |uA(xi)−uB(xi)|,
|vA(xi)− vC(xi)|> |vA(xi)− vB(xi)|.

Thus, we get
uψ(A,C)(xi) > uψ(A,B)(xi),
vψ(A,C)(xi) 6 vψ(A,B)(xi), ∀ xi ∈ X .

Additionally, from the definition of ψ(A,B), we
know uψ(A,B)(xi) > vψ(A,B)(xi).
So, ψ(A,C) is less fuzzy than ψ(A,B).
Again known by the definition of entropy for IFS,
we have

E(ψ(A,C)) 6 E(ψ(A,B)).
In the similar way, we can get

E(ψ(A,C)) 6 E(ψ(B,C)).
Therefore, E(ψ(A,C)) 6 E(ψ(A,B))∧E(ψ(B,C)).

Corollary 4.1. Let E be an entropy of IFS, as-
sume ψ(A,B) ∈ I F (X) is defined as above, then
E(ψ(A,B)′) is also a similarity measure between
IFSs A and B. The proof is obvious (Omitted).

Definition 4.2. Let A,B be two IFSs in universe
X = {x1,x2, · · · ,xn}. For any parameter α ∈ [1,+∞),
we define another new intuitionistic fuzzy set
φ(A,B) from A,B as

uφ(A,B)(xi)=
1
2
(1+min{|uA(xi)−uB(xi)|α , |vA(xi)−vB(xi)|α });

vφ(A,B)(xi)=
1
2
(1−max{(|uA(xi)−uB(xi)|)α , |vA(xi)−vB(xi)|α }).
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Theorem 4.6. Let E be an entropy of IFSs, then both
E(φ(A,B)) and E(φ(A,B)′) are similarity measures
of IFSs A and B.
Proof. It can be similarly proved as Theorem 4.5
and Corollary 4.1 (Omitted).

Example 4.5. Assume X = {x1,x2, · · · ,xn} is a
finite universe, and

E(A) = 1− 1
n ∑n

i=1 |uA(xi)− vA(xi)|
is an entropy of IFS A, then we can get the following
similarity measure by theorem 4.5.

S(A,B)
= E(ψ(A,B))
= 1− 1

n ∑n
i=1(|uψ(A,B)(xi)− vψ(A,B)(xi)|)

= 1− 1
n ∑n

i=1[
1+min{|uA(xi)−uB(xi)|,|vA(xi)−vB(xi)|}

2 −
1−max{|uA(xi)−uB(xi)|,|vA(xi)−vB(xi)|}

2 ]
= 1− 1

2n ∑n
i=1(|uA(xi)−uB(xi)|+ |vA(xi)− vB(xi)|).

In the sequel, we also put forward the other trans-
form method of setting up entropy of IFS based on
similarity measure of IFSs.
Let A = {〈xi,uA(xi),vA(xi)〉| xi ∈ X} ∈ I F (X) be
an IFS in universe X = {x1,x2, · · · ,xn}, we define
the other two intuitionistic fuzzy sets f (A), g(A)
from given IFS A as follows:

u f (A)(xi) = 1+|uA(xi)−vA(xi)|2
2 ,

v f (A)(xi) = 1−|uA(xi)−vA(xi)|
2 ;

and
ug(A)(xi) = 1−|uA(xi)−vA(xi)|

2 ,

vg(A)(xi) = 1+|uA(xi)−vA(xi)|2
2 .

Then, we immediately obtain the following theorem.

Theorem 4.7. Suppose S is a similarity mea-
sure of IFSs, and A is an IFS in the universe
X = {x1,x2, · · · ,xn}, then S( f (A),g(A)) is an en-
tropy of IvIFS A.
Proof.
(P1): If A ∈ P(X), then for all xi ∈ X ,

uA(xi) = 1, vA(xi) = 0 or uA(xi) = 0, vA(xi) = 1.
Further, from the definitions of f (A), g(A), we have

u f (A)(xi) = 1+1
2 = 1, v f (A)(xi) = 1−1

2 = 0;
and

ug(A)(xi) = 1−1
2 = 0, vg(A)(xi) = 1+1

2 = 1.

So, f (A) = X , g(A) = /0 are all crisp sets.
By the definition of similarity measure, we have

S( f (A),g(A)) = S(X , /0) = 0.
(P2): Since f (A),g(A)∈I F (X), and from the def-
inition of similarity measure of IFSs it follows that

S( f (A),g(A)) = 1
⇔ f (A) = g(A)
⇔ u f (A)(xi) = ug(A)(xi), v f (A)(xi) = vg(A)(xi),∀xi ∈
X .
⇔ (|uA(xi) − vA(xi)|)(|uA(xi) − vA(xi)| + 1) =
0, ∀xi ∈ X .
⇔ |uA(xi)− vA(xi)|= 0, ∀xi ∈ X .
⇔ uA(xi) = vA(xi), ∀xi ∈ X .
(P3): Suppose A is less fuzzy than B, then we know,
If uA(xi) 6 uB(xi), vA(xi) > vB(xi), for uB(xi) 6
vB(xi);
then uA(xi) 6 uB(xi) 6 vB(xi) 6 vA(xi),
So, |uA(xi)− vA(xi)|> |uB(xi)− vB(xi)|,
Thus, g(A)⊆ g(B)⊆ f (B)⊆ f (A).
Known by the definition of similarity measure of
IFSs, we have

S( f (A),g(A))6 S( f (B),g(A))6 S( f (B),g(B)).
With the same reason, it follows that
when uA(xi) > uB(xi), vA(xi) 6 vB(xi), for
uB(xi) > vB(xi);
then uA(xi) > uB(xi) > vB(xi) > vA(xi).
So, |uA(xi)− vA(xi)|> |uB(xi)− vB(xi)|.
Thus, g(A)⊆ g(B)⊆ f (B)⊆ f (A).
Known by the definition of similarity measure of
IFSs, we have

E(A) = S( f (A),g(A)) 6 S( f (B),g(A))
6 S( f (B),g(B)) = E(B).

Therefore, if A is less fuzzy than B, then
S( f (A),g(A)) 6 S( f (B),g(B)).

(P4): From the definitions of f (A), g(A), we know
f (A) = f (A′), g(A) = g(A′).

and due to the definition of similarity measure, it is
obvious that
E(A′) = S( f (A′),g(A′)) = S( f (A),g(A)) = E(A).
The proof is completed.

Corollary 4.2. Let S be a similarity measure of
IFSs, then S(( f (A))′,(g(A))′) is an entropy of IFS
A. The proof is similar to that of Theorem 4.7 (Omit-
ted).
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Example 4.6. Assume X = {x1,x2, · · · ,xn}, A ∈
I F (X), the Normalized Eculidean similarity mea-
sure is given as

S(A,B) = 1 − { 1
2n ∑n

i=1[|uA(xi) − uB(xi)|2 +
|vA(xi)− vB(xi)|)2]} 1

2 ,
from Theorem 4.7 we then know that

S( f (A),g(A))
= 1−{ 1

2n ∑n
i=1 2(1

2)2( |uA(xi)− vA(xi)|2 + |uA(xi)−
vA(xi)| )2 } 1

2 ,
= 1−{ 1

4n ∑n
i=1(|uA(xi)− vA(xi)|4 + |uA(xi)−

vA(xi)|2 +2|uA(xi)− vA(xi)|3)} 1
2

is an entropy of IFS A.

Example 4.7. Assume X = [a,b], A ∈ I F (X),
the Normalized hamming similarity measure is

S(A,B) = 1 − 1
2(b−a)

∫ b
a (|uA(x) − uB(x)| +

|vA(x)− vB(x)|)dx,
then

S( f (A),g(A))
= 1− 1

4(b−a)
∫ b

a 4× 1
2 [ |uA(x)− vA(x)|2 + |uA(x)−

vA(x)| ]dx,
= 1 − 1

2(b−a)
∫ b

a (|uA(x) − vA(x)|2 + |uA(x) −
vA(x)|)dx

is also an entropy of IFS A.

Theorem 4.8. Let E be an entropy of IFS, for any
two IFSs A,B ∈ I F (X), we define another intu-
itionistic fuzzy set h(A,B) as follows:
µh(A,B)(x) = 1+[|µA(x)−µA∪B(x)|+|νA(x)−νA∪B(x)|)/2]2

2 ,

νh(A,B)(x) = 1−[|µA(x)−µA∪B(x)|+|νA(x)−νA∪B(x)|)/2]
2 ,

then E(h(A,B)) is a inclusion measures of IFSs A
and B.
Proof.
(I1) If A = X ,B = /0, then
h(A,B)(x) = (µh(A,B)(x),νh(A,B)(x)) = (1,0),∀x∈X .
i.e., h(A,B) ∈P(X),
Again by axiomatic property of entropy we know
that E(h(A,B)) = 0.
(I2) If A⊆ B, then µh(A,B) = νh(A,B) = 1/2.
Thus, E(h(A,B)) = 1.
(I3) If A⊆ B⊆C,
then µh(C,A) > µh(C,B), νh(C,A) 6 νh(C,B),
Again from µh(C,B) > νh(C,B), it is easy to see that

h(C,A)¿ h(C,B).
Thus, by the axiomatic definition of entropy we have

E(h(C,A)) 6 E(h(C,B)).
Similarly, we can get E(h(C,A)) 6 E(h(B,A)).
Theorem 4.9. Assume that d and S are the distance
and similarity measures of IFSs, then I(A,B) =
S(A,A∩B) = 1− d(A,A∩B) is an inclusion mea-
sure of IFS A and B.
Proof.
(I1) Due to the definition of the similarity measure
for IFSs, we get

I(X ,φ) = S(X ,X ∩φ) = S(X ,φ) = 0.
(I2) From the expression of I(A,B), we have

I(A,B) = 1⇔ S(A,A∩B) = 1
⇔ A = A∩B⇔ A⊆ B.

(I3) For A⊆ B⊆C, then we get
I(C,A) = S(C,C∩A) = S(C,A),

and I(B,A) = S(B,B∩A) = S(B,A).
Hence I(C,A) 6 I(B,A) = S(B,A) by the definition
of similarity measure for IFSs.
In the same manner, we can prove that

I(C,A) 6 I(C,B).

Example 4.8. For A,B ∈ I F (X), and we order
distance measure as
d(A,B) = 1

2n Σn
i=1(|uA(xi)−uB(xi)|+ |vA(xi)−

vB(xi)|+ |ΠA(xi)−ΠB(xi)|),
then we obtain the corresponding inclusion measure

I(A,B) = S(A,A∩B)
= 1− 1

2n Σn
i=1(|uA(xi)−uA∩B(xi)|+ |vA(xi)−

vA∩B(xi)|+ |ΠA(xi)−ΠA∩B(xi)|)
= 1− 1

2n Σn
i=1(|uA(xi)−uA(xi)∧uB(xi)|+ |vA(xi)∨

vB(xi)− vA(xi)|+ |uA(xi)∧uB(xi)+ vA(xi)∨
vB(xi)−uA(xi)− vA(xi)|).

Theorem 4.10. Assume that d and S are the
distance and similarity measures of IFSs, then
I(A,B) = S(B,A ∪ B) = 1− d(B,A ∪ B) is the in-
clusion measure of IFS A and B.
Proof. The proof is similar to that of Theorem 4.9,
it is omitted.

Example 4.9 For A,B ∈ I F (X), and we order
distance measure as (Rf. 11,16)

d(A,B)=
1

2n
Σn

i=1(|uA(xi)−uB(xi)|+|vA(xi)−vB(xi)|),
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Then we obtain the corresponding inclusion mea-
sure
I(A,B) = S(B,A∪B) = 1− 1

2n Σn
i=1(|uB(xi)−uA(xi)

∨uB(xi)|+ |vA(xi)∧ vB(xi)− vB(xi)|).
Theorem 4.11. Let I be an inclusion measure of
IFSs, for each A ∈ I F (X), A′ be the complement
of IFS A, then E(A) = I(A′∪A,A′∩A) is an entropy
of IFS A.
Proof. We need to prove that it satisfies all the ax-
iomatic properties of entropy for IFS.
(P1): If A ∈ P(X), then A′∪A = X ,A′∩A = /0,

So, I(A′∪A,A′∩A) = I(X ,φ).
Since I is an inclusion measure, we have

I(A′∪A,A′∩A) = I(X , /0) = 0.
(P2): From property (I2) in the definition of inclu-
sion measure, we immediately have

I(A′∪A,A′∩A) = 1 ⇔ A′∪A = A′∩A
⇔ A = A′⇔ uA(xi) = vA(xi), ∀xi ∈ X .

(P3): If A is less fuzzy than B, then we deduce that
A′∩A⊆ B′∩B⊆ B′∪B⊆ A′∪A.

With the property (I3) in definition 3.4 of inclusion
measure, we get

E(A) = I(A′∪A,A′∩A)
6 I(B′∪B,A′∩A)
6 I(B′∪B,B′∩B) = E(B).

(P4): Since A′ = 〈vA,uA〉, A′′ = A, we have
E(A′) = I(A∪A′,A∩A′) = E(A).

Theorem 4.12. Let I be an inclusion measure of
IFSs, if a real function S : I F (X)×I F (X) →
[0,1] satisfying S(A,B) = I(A,B)∧ I(B,A), then S is
a similarity measure of IFSs.
Proof.
(S1) S(A,A′) = I(A,A′)∧ I(A′,A) = 0, if A is a crisp
set in X .
(S2) A = B⇔ S(A,B) = I(A,B)∧ I(B,A) = 1.
(S3) S(A,B) = I(A,B)∧ I(B,A)

= I(B,A)∧ I(A,B) = S(B,A).
(S4) if A⊆ B⊆C, then I(A,B)∧ I(B,A) = I(B,A),

S(A,C) = I(A,C)∧ I(C,A) = I(C,A)
6 I(B,A) = I(A,B)∧ I(B,A) = S(A,B).

Similarly, we can get S(A,C) 6 S(B,C).

5. Conclusions

In this paper, we summarize many entropy mea-
sures, similarity measures and inclusion measures,
which have been applied to many real-world fields
such as pattern recognition, clustering analysis and
image processing. The close relationships among
entropy, similarity measure, inclusion measure of
IFSs are also investigated. Some new formulae to
calculate entropy, similarity measure, and inclusion
measure of IFS have been put forward. Also, we
compare these measures with the existing ones and
obtain some important theorems by which entropy,
similarity measure, and inclusion measure of IFSs
can be transformed into each other.
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