
Padding Free Bank Conflict Resolution for CUDA-Based Matrix Transpose
Algorithm

Ayaz ul Hassan Khan , Mayez Al-Mouhamed , Allam Fatayer , Anas Almousa , Abdulrahman Baqais and
Mohammed Assayony

Computer Engineering Department, King Fahd University of Petroleum and Minerals,
Dhahran, 31261, Saudi Arabia

E-mail: {ahkhan, mayez, g201003720, anasm, g201004220, g201102150}@kfupm.edu.sa

Abstract

The advances of Graphic Processing Units (GPU) technology and the introduction of CUDA program-
ming model facilitates developing new solutions for sparse and dense linear algebra solvers. Matrix
Transpose is an important linear algebra procedure that has deep impact in various computational science
and engineering applications. Several factors hinder the expected performance of large matrix transpose
on GPU devices. The degradation in performance involves the memory access pattern such as coalesced
access in the global memory and bank conflict in the shared memory of streaming multiprocessors within
the GPU. In this paper, two matrix transpose algorithms are proposed to alleviate the aforementioned
issues of ensuring coalesced access and conflict free bank access. The proposed algorithms have com-
parable execution times with the NVIDIA SDK bank conflict - free matrix transpose implementation.
The main advantage of proposed algorithms is that they eliminate bank conflicts while allocating shared
memory exactly equal to the tile size (T x T) of the problem space. However, to the best of our knowl-
edge an extra space of Tx(T+1) needs to be allocated in the published research. We have also applied the
proposed transpose algorithm to recursive gaussian implementation of NVIDIA SDK and achieved about
6% improvement in performance.

Keywords: Bank conflict free, coalesced memory access, CUDA, GPU, matrix transpose, linear Algebra
solvers, solving system of linear equations.

1. Introduction

GPU (Graphics Processor Unit) has been applied ex-
tensively in various scientific and engineering do-
mains. These are the primary components in the
latest supercomputers in terms of performance gain
and energy efficiency 1. Due to its high parallelism
and efficiency, GPU was utilized to obtain high per-
formance in many of linear algebra problems involv-
ing matrices. The matrix is a fundamental concept
of linear algebra since they denote a linear relation-
ship 2.

The performance of implementing naı̈ve matrix
transpose in GPU was disappointing. Though the
GPU performance is very high, the utilization of
memory system is essential to ensure a good appli-
cation performance. To write efficient application
kernels, the programmers have to consider the de-
tails of GPU memory architecture and access pat-
terns of each memory type. Another point of con-
sideration is the issue of shared memory bank con-
flicts where many requests are submitted to the same
bank and hence the requests will be serialized affect-

International Journal of Networked and Distributed Computing, Vol. 2, No. 3 (August 2014), 124-134

Published by Atlantis Press 
Copyright: the authors 

124



A. Khan, M. Al-Mouhamed, A. Fatayer, A. Almousa, A. Baqais, and M. Assayony

ing the parallelism performance expected from the
GPU 3. One of the common techniques proposed by
NVIDIA is known as padding. It refers to the strat-
egy of adding dump columns or rows to solve the
issues of matrix divisibility or bank conflicts. This
strategy was used in matrix transpose and its impact
on performance was noticeable.

Matrix transpose problem involves replacing all
the elements in the rows of one matrix to be placed
vertically (column-wise). Some authors argue that
the use of matrix transpose in itself is limited and
of little use, and the power of transpose matrix is
revealed in utilizing other algebraic problems like
matrix multiplication in which matrix transpose is
used as an intermediate step 2. Though this view is
valid to some extent, the literature has plenty of us-
age of matrix transpose in different applications and
domains. The impact of matrix transpose to improve
the performance of matrix multiplication is notice-
able in 2,4. However, matrix transpose has also been
applied for utilizing the bottleneck in transferring
data between host and device memory in clusters 5,6

and in other architectures such as distributed mem-
ory architecture 7. Moreover, it has been applied in
enhancing the performance of deep packet inspec-
tion (a famous problem in the domain of network
security) by avoiding non-coalesced memory access
8. Volkov and Demmel 9 studied the impact of the
matrix transpose algorithms in matrix factorization,
which is one important algorithm for solving system
of linear equations.

When applying matrix transpose in a single pro-
cessor, the elements in memory are not necessarily
changed, but only the indices. However , in a dis-
tributed memory architecture, this is not the case 7.
Due to the different speed in the hierarchy of mem-
ory types where registers, cache and local memory
are faster than off-processor memory and also due
to the allocation size of the data segments to be
given to each processor, several issues must be ad-
dressed such as load balancing, scattered decompo-
sition and the communication scheme. In a GPU
device, blocks of data are assigned to the proces-
sors. Furthermore, shared and global memory has
different access speed and latency, so it simulates
a distributed memory environment in a single ma-

chine. However, CUDA programming model sim-
plifies the solutions to the aforementioned issues and
the performance of matrix transpose is noticeably
high comparing to the parallel matrix transpose al-
gorithms for distributed memory concurrent com-
puters 7. The efficient usage of global memory and
shared memory is a key factor in kernel optimiza-
tions, the efficiency is achieved through coalescing
of global memory access and the bank conflict free
access of shared memory 10.

In this paper, we have designed two matrix trans-
pose algorithms for GPU. Both algorithms ensure
that all global memory accesses are coalescent and
all shared memory accesses are bank conflict free.
The first algorithm reads a tile of the input matrix in
the global memory to the shared memory transposes
it locally in the shared memory and then writes it
back to the output matrix in the global memory. The
main step in this algorithm is the swapping of ele-
ments of the rows and columns in the tile. How-
ever, accessing successive elements of a column by
successive threads in a half-warp when the tile size
is multiple of 16 causes bank conflict. Our algo-
rithm avoids the bank conflict by mapping the block
threads to the tile elements diagonally. Even though
the first algorithm reported good execution time, we
found that it could be further improved by reduc-
ing shared memory accesses and distribute the work
evenly between the threads within a warp. In the
second algorithm, the transpose is performed as sim-
ple as reading a tile into the shared memory from
the input matrix in the global memory and writing
it back to the output matrix in the global memory.
Since our goal is to ensure that all accesses are coa-
lescent and bank conflict free, this goal is achieved
by carrying out different mappings of threads within
a block and the elements in a tile in read and write
operations.

The remainder of the paper is organized as fol-
lows: Section 2 provides a brief background on GPU
and CUDA. Section 3 presents some of the previous
implementations of matrix transpose algorithms. In
Section 4, an in-depth illustration and explanation of
proposed algorithms has been laid out. The results
are shown and discussed in Section 5 while we con-
clude our paper in Section 6.

Published by Atlantis Press 
Copyright: the authors 

125



Padding Free Matrix Transpose

2. GPU And CUDA

General Purpose Graphic Processor Unit (GPGPU)
gains higher attention and recognition these days as
a suitable platform for engineering and science ap-
plications. Initially, AMD & Intel microprocessors
with GFLOPS were used using hypercube multipro-
cessors that offered a cost effective and feasible ap-
proach to supercomputing through parallelism at the
processor level by direct connecting a large num-
ber of low-cost processors with local memory which
communicate by message passing instead of shared
variables 11, especially if bunch of these processors
could be clustered together. However, power con-
sumption was a major issue 12. GPU on the other
hand is capable of executing more GFLOPS than
normal CPU. It provides a highly parallel comput-
ing environment suitable for numerous data parallel
arithmetic computations such as dense linear alge-
braic operations 13. However, the only restriction in
earlier GPU version lies in its lack of support for
IEEE FP Standards 12. GPGPU costs are rapidly
decreasing with increasing speed and wider mem-
ory. GPU has the advantage over CPU in utilizing
transistors more efficiently. Though the challenges
involved in programming GPU, they still provide a
conductive platform for variety of applications from
linear algebra to 3D gaming. It has been applied to
various application domains including linear algebra
2,5,4,6,9, ray tracing and image processing 14,15,16.

CUDA T M is “a parallel computing platform and
programming model that enables dramatic increases
in computing performance by harnessing the power
of the graphics processing unit (GPU)” 17. It de-
mands and requires a deep level of understanding
of the organization of GPU memory and the exe-
cution context. Utilizing GPU underlying architec-
ture and design by writing a program in CUDA is
not straightforward or intuitive even for experienced
programmers. CUDA requires a specific compiler
to extract parallel code from sequential code and
execute each of them to the corresponding device.
That is, sequential code will be executed on the CPU
while the parallelized segment of the code will be in-
terpreted on the GPU device. These segments need
to be implemented as isolated functions also called
kernels. These kernel functions are compiled by the

NVIDIA CUDA compiler and the kernel GPU ob-
ject code generator 18.

3. Previous work

Ruetsch et al 19 discussed different aspects on how
to improve the performance of out-of-place ma-
trix transpose, where a matrix is transposed and
stored into another matrix in the GPU’s global mem-
ory. The most efficient implementation on mod-
ern GPUs they reported is the one that coalesces
all global memory accesses performed by a half-
warp of threads and guarantees that all threads in
a half warp access shared memory locations associ-
ated with different banks.

The first condition can be achieved by accessing
the input and output matrices in the global memory
row-wise. The nave algorithm for matrix transpose
is to read input matrix row-wise and writes the ele-
ments to the output matrix column-wise. However,
the writes to the output matrix cannot be coalesced,
since the half-warp threads access non-contiguous
locations in the global memory.

To avoid non-coalesced accesses in writing to the
global memory, the shared memory is used to tem-
porarily store the elements read from the input ma-
trix. To use the shared memory efficiently, a TxT
matrix called tile, is allocated, where T is a multiple
of 16. Each thread block reads a tile of TxT elements
from the input matrix and stores them into the tile in
the shared memory. The threads of a block read the
elements of input matrix row-wise and write them
to the shared memory matrix row-wise too. Then
these threads read from the shared memory column-
wise and write to the output matrix row-wise. Since
shared memory locations are not necessarily be ac-
cessed continuously, the coalescent access is guar-
anteed. However, synchronization is necessary be-
tween the threads in write and read operations to the
shared memory because the element that was written
by one thread in the shared memory might be read
by another thread.

Although this algorithm performs coalesced
global memory accesses, it suffers from bank con-
flict problem in accessing the shared memory. When
the tile size is multiple of 16, the locations of the

Published by Atlantis Press 
Copyright: the authors 

126



A. Khan, M. Al-Mouhamed, A. Fatayer, A. Almousa, A. Baqais, and M. Assayony

same columns are assigned to the same shared mem-
ory banks, and therefore, all read operations from
the shared memory executed by a half-warp thread
involve bank conflict.

To avoid the bank conflicts, the tile of size
Tx(T+1) is allocated. The extra column is added
only to assign a location read by a half-warp thread
to different banks in the shared memory and there-
fore eliminates the bank conflicts in reading from the
tile as shown in Figure 1.

Figure 1: Shared memory tile column padding to
carry out the permutation on the data

Figure 2: Threads and Elements mapping at each
steps of the First Algorithm (Selective Copying)

We note that the bank conflict could be avoided
without wasting shared memory by mapping the
half-warp threads to different columns in the tile
in expense of simple calculations. Since the ma-
trix transpose is a memory-bound application, the
computation overheads of these calculations could
be hidden and does not significantly affect the exe-
cution time of the kernel.

4. Proposed Algorithms

In this section we explain our algorithms for matrix
transpose.

4.1. The First Algorithm: Selective Copying

Algorithm 1 shows the pseudo code of our first im-
plementation for matrix transpose. There are three

Algorithm 1 Selective Copying
ourTranspose1(odata, idata, width, height)

Parameters:
odata = global memory array to store the results
idata = global memory array to store the input
width = width of the matrices
height = height of the matrices
Constants and Keywords:
TILE DIM = Dimension of the tile to load
into shared memory. The allocated tile will be
TILE DIM x TILE DIM in size
blockIdx.x = x index of current block
blockIdx.y = y index of current block
threadIdx.x = x index of current thread within a
block
threadIdx.y = y index of current thread within a
block

Algorithm:
1: xIndex = blockIdx.x * TILE DIM + threadIdx.x
2: yIndex = blockIdx.y * TILE DIM + threadIdx.y
3: index in = xIndex + yIndex * width
4: xIndex = blockIdx.y * TILE DIM + threadIdx.x
5: yIndex = blockIdx.x * TILE DIM + threadIdx.x
6: index out = xIndex + yIndex * height
7: tile[threadIdx.y][threadIdx.x] = idata[index in]
8: synchronize all threads
9: x bar = (threadIdx.x + threadIdx.y) %

TILE DIM
10: y bar = threadIdx.x
11: if y bar > x bar then
12: temp1 = tile[y bar][x bar]
13: temp2 = tile[x bar][y bar]
14: tile[x bar][y bar] = temp1
15: tile[y bar][x bar] = temp2
16: end if
17: synchronize all threads
18: odata[index out] =

tile[threadIdx.y][threadIdx.x]

Published by Atlantis Press 
Copyright: the authors 

127



Padding Free Matrix Transpose

main steps: reading from the input matrix in the
global memory to the tile in the shared memory
(Lines 1-3, 7), transposing the tile (Lines 9-16) and
writing the tile to the proper location in the output
matrix in the global memory (Lines 4-6, 18).

The first step is the same step performed by the
NVidia algorithm: the threads of the block read the
elements from the input matrix in the global mem-
ory row-wise and write them to the tile in the shared
memory row-wise (Line 7). As discussed earlier,
these accesses are coalescent and bank conflict free.

In the second step, the elements of the tile are
transposed inside the tile. To ensure that all accesses
to the tile in order to transpose the elements are bank
conflict free, the block threads are mapped to the tile
elements diagonally (Lines 9, 10). The mapping be-
tween the thread (x, y) and the element (x’, y’) that
should be accessed by this thread within the tile of
dimension T is as the following:

x′ = (x+ y)modT (1)
y′ = x (2)

The transpose of the tile elements is based on
swapping the elements in the upper half of the tile
with the elements in the lower half. The elements
lies in the diagonal are not changed (Line 11).

The swapping between upper half and lower half
elements are involved by the threads that are mapped
to the elements of the upper half (active threads).
Other threads don’t perform any work in this step
(idle threads). This configuration ensures that the
active threads of each half-warp are accessing ele-
ments in different banks and therefore all accesses
are bank conflict free.

When all elements are transposed, the last step
is to write the tile back to the output matrix in the
global memory (Line 18). This step is achieved
by mapping threads (Lines 4-6) to the tile elements
row-wise and allowing half-warp threads to read the
elements row-wise from the tile and write them row-
wise to the output matrix. Since both matrices are
accessed row- wise, all accesses are coalescent and
bank conflict free. Figure 2 shows the threads and
elements mapping at each step of the first algorithm.

4.2. The Second Algorithm: Parallel Write

The main advantage of the first algorithm we dis-
cussed in the previous sub-section is that it elimi-
nates bank conflict while allocating shared memory
space exactly equal to the tile size of TxT, while
NVIDIA algorithm allocates Tx(T+1) space for a
tile. However, the implementation has two draw-
backs:

1. It performs many accesses to the shared mem-
ory in order to transpose the tile in the shared
memory. Though all accesses are bank con-
flict free, accessing shared memory is counted
as a computation instruction and takes execu-
tion time similar to that of computation in-
struction 20. The evaluation shows that when
the thread block size is relatively small, this
computation might not be hidden by the data
transfer and they affect the overall execution
time of the kernel.

2. All accesses mentioned above are performed
by less than a half of the block threads, while
most of the threads stay idle. This configura-
tion has two side effects. The first is the ac-
tive threads take more time to complete the
work. The second is the effect of branching,
since the branch instruction divides the warp
threads into two groups that should be sched-
uled independently 20.

To overcome these drawbacks, we designed the
second algorithm as shown in Listing 2. This al-
gorithm achieves the advantage of the first algo-
rithm while all drawbacks are avoided. This has
been achieved by carrying out different mappings of
threads within a block and elements in a tile in read
and write operations.

The algorithm performs two main steps: read-
ing from the input matrix in the global memory to
the tile in the shared memory (Lines 1-3, 7-9) and
writing the tile elements to the proper location in the
output matrix in the global memory (Lines 4-6, 11-
13).

In the first step, the threads of the block read the
elements from the input matrix in the global mem-
ory row-wise and write them to the tile in the shared

Published by Atlantis Press 
Copyright: the authors 

128



A. Khan, M. Al-Mouhamed, A. Fatayer, A. Almousa, A. Baqais, and M. Assayony

memory diagonally (Lines 7-9). The mapping be-
tween the thread (x, y) and the element (x’, y’) that
should be written by this thread within the tile of
dimension T is the same mapping used in the first
algorithm (see Equations 1 and 2).

Algorithm 2 Parallel Write
ourTranspose2(odata, idata, width, height)

Parameters:
odata = global memory array to store the results
idata = global memory array to store the input
width = width of the matrices
height = height of the matrices
Constants and Keywords:
TILE DIM = Dimension of the tile to load
into shared memory. The allocated tile will be
TILE DIM x TILE DIM in size
blockIdx.x = x index of current block
blockIdx.y = y index of current block
threadIdx.x = x index of current thread within a
block
threadIdx.y = y index of current thread within a
block

Algorithm:
1: xIndex = blockIdx.x * TILE DIM + threadIdx.x
2: yIndex = blockIdx.y * TILE DIM + threadIdx.y
3: index in = xIndex + yIndex * width
4: xIndex = blockIdx.y * TILE DIM + threadIdx.x
5: yIndex = blockIdx.x * TILE DIM + threadIdx.x
6: index out = xIndex + yIndex * height
7: x bar = (threadIdx.x + threadIdx.y) %

TILE DIM
8: y bar = threadIdx.x
9: tile[y bar][x bar] = idata[index in]

10: synchronize all threads
11: x coor = (threadIdx.x + threadIdx.y) %

TILE DIM
12: y coor = threadIdx.y
13: odata[index out] = tile[y coor][x coor]

Since all read operations from the global mem-
ory are row- wise, the memory accesses are coa-
lesced. And by using diagonal mapping in writ-

ing to the shared memory, we ensure that all ele-
ments accessed by half-warp threads are in differ-
ent bank. Therefore, all shared memory accesses are
bank conflict free.

Before writing to the transposed tile to the output
matrix, we should note that by writing the tile ele-
ments diagonally, the elements stored in each row
of the tile are exactly the elements of the column
that are read from the input matrix, starting from the
diagonal element. Therefore, to complete the trans-
pose we need to map the threads to the tile elements
properly (Lines 11, 12), read the elements from the
tile row wise and write them to the output matrix
row-wise. The mapping between the thread (x, y)
and the element (x’, y’) that should be read by this
thread is as the following:

x′ = (x+ y)modT (3)
y′ = y (4)

Since reads and writes operations are row-wise,
they are coalesced and bank conflict free. Figure 3
shows the threads and elements mapping at each step
of the second algorithm.

Figure 3: Threads and Elements mapping at each
steps of the Second Algorithm (Parallel Write)

The proposed approach to access elements in
shared memory diagonally in matrix transpose al-
gorithms 1 and 2 can also be applied to any other
application having bank conflict issue. We have
defined a C macro as follows to be used in other
applications to avoid shared memory bank conflicts.

#define tile(y,x) tile[x % TILE DIM][(x+y) %
TILE DIM]

Published by Atlantis Press 
Copyright: the authors 

129



Padding Free Matrix Transpose

The programmer just needs to use the above macro
to access shared memory variable instead of direct
accessing as array.

4.3. Generalized Approach

Furthermore, using modulo (%) operator to each ac-
cess in shared memory may reduce performance.
So, we need to define some alternative to modulo op-
erations. By architecture, the shared memory system
(ShM) which is available within each SM consists of
S= 2r = 24 memory banks denoted by ShM = {MK}
for k in [0,15]. These memory banks MK are ac-
cessed in parallel by the currently executing half-
warp (hw) which consists of a group of S threads.
The standard row major storage of an NxN two di-
mensional array A(j,i) leads to map each array el-
ement A(j,i) into memory bank MK such that k =
(jxN+i) mod S. A half-warp hw = {thK ,.., thK+15}
lying in a kernel block row. Thus hw accesses dis-
tinct memory banks because its array addresses dif-
fer in the column numbers(i). Therefore, the least
significant r bits of K are all distinct which causes all
the data accessed by hw to fall into distinct memory
banks. However, when hw accesses a group of data
elements lying in a column, the addresses generated
by all the threads of hw have fixed i and differ only in
j. As that k = (jxN+i) mod S there is no guaranty that
these addresses fall into distinct memory banks. The
question is to find a mapping function k=f(j,i) from
array address (j,i) onto the memory bank k such ar-
ray element a(i,j) fall into distinct memory banks for
each hw that accesses a set of data patterns like a
row of S elements or a column of S elements that
distant by a multiple of S. If such a function f(j,i)
exists then any hw will perform a conflict free ac-
cess to all the S banks of ShM because all of threads
generate distinct addresses. In other words the least
significant r bit in the mapping k = (jxN+i) mod S
must be linked to row index i as well as to column
index j to cause parallel access to rows and columns.
This can be achieved by changing the array mapping
from the standard (j,i) to (j, i xor (j and 0F)), where
xor is the exculsive-or operator and (j and 0F) gives
the least significant r bits of j which are xor-ed with
the lsb 4 bit of i. When hw is accessing a row of
data elements the row numbering (j and 0F) will be

constant for all the generated hw addresses and con-
flict free access is achieved due to distinct 4 lsb in
i. Similarly when hw is accessing a column of data
elements the 4 lsb of i will be constant for all the
generated hw addresses and conflict free access will
be due to distinct (j and 0F), i.e. 4 lsb in j. In both
cases hw generates array addresses that are all dis-
tinct. Therefore, the mapping scheme (j,i) → (j, i
xor (j and 0F)) provides a conflict-free access to all
the S memory banks of ShM when accessing rows
or columns.

5. Experimental Results

To evaluate the performance of our algorithms, we
have implemented them, in addition to the NVIDIA
algorithm, as CUDA kernels. We have used the ex-
ecution time elapsed by the kernels as the perfor-
mance parameter. Table 1 shows the main features
of the GPU on which the implementations were run.

Table 1: GPU Specification
Property Value

GPU Model Quadro FX 7000
CUDA Capability Major/Minor Version 2.0

Total amount of global memory 4 GBytes
(16) Multiprocessors x (32) CUDA Cores/MP 512 CUDA Cores

Total amount of shared memory per block 48 KBytes
Maximum number of threads per block 1024

The three implementations that we used for eval-
uation comparisons are:

1. No bank conflict Transpose17

2. Selective Copying

3. Parallel Write

Table 2: Experimental Setup
Tile Size Thread Block Size
16 x 16 16 x 1, 16 x 2, 16 x 4, 16 x 16
32 x 32 32 x 1, 32 x 2, 32 x 4, 32 x 8, 32 x 16, 32 x 32
48 x 48 48 x 1, 48 x 2, 48 x 4, 48 x 6, 48 x 8, 48 x 12, 48 x 16

We run these implementations several times with
the following configurations:

1. Matrices of 3072 x 3072 floats that is the max-
imum multiple of 32 and 48 that could be al-
located.

Published by Atlantis Press 
Copyright: the authors 

130



A. Khan, M. Al-Mouhamed, A. Fatayer, A. Almousa, A. Baqais, and M. Assayony

2. We have used three tile sizes: 16x16, 32x32
and 48x48. The last is the maximum tile size
that can be allocated.

3. The implementations have been run with all
possible thread block sizes shown in Table 2.

4. Number of iterations = 100.

Figures 4,5,6 show the execution time of run-
ning the three different implementations with differ-
ent configurations.

Table 3: Shared Memory Usage per Kernel Block
Tile Size Shared Memory Usage % Reduced

NVIDIA Proposed
16 x 16 1088 1024 5.88
32 x 32 4224 4096 3.03
48 x 48 9408 9216 2.04

Figure 4: Exec. time for the three implementations
with Tile Size = 16 x 16

Figure 5: Exec. time for the three implementations
with Tile Size = 32 x 32

Figure 6: Exec. time for the three implementations
with Tile Size = 48 x 48

The results show that the three implementations
are almost have the same time to transpose a ma-
trix of size 3072x3072, except for some configu-
rations. But our implementations (Selective Copy-
ing and Parallel Write) uses less shared memory per
block than the NVIDIA implementation as shown in
Table 3 and gives more reduction in terms of per-
centage in case of small tile size.

When the thread block size is one-dimensional
block (16x1, 32x1, 48x1), the three implementations
give the maximum value for the execution time. This
is because in one- dimensional block, each thread
transposes more memory elements than the threads
in other configurations. As an example, in the tile of
48x48 and the block of 48x1, each thread transposes
48 elements in the input matrix, while in the block
of 48x16 each thread transposes 3 elements only.

The results also show that when the thread block
size is one- dimensional block (16x1, 32x1, 48x1),
Selective Copying gives the largest value among the
three implementations. This is because in this im-
plementation the active threads in the block execute
many memory accesses in order to transpose the tile
in the shared memory. When the thread block size
is small, these accesses cannot be hidden by global
memory accesses, and therefore their overheads ap-
pear in the execution time.

We note also in Figure 5 that for the block size
of 32x32, the execution time is high and Selec-
tive Copying is the highest. This is due to the fact
that when the block size of 32x32 has 1024 threads
(32x32=1024) and this number with the other con-
figurations in the implementations is beyond the oc-

Published by Atlantis Press 
Copyright: the authors 

131



Padding Free Matrix Transpose

cupancy of the GPU as reported by NVIDIA CUDA
GPU Occupancy Calculator 21. When the kernel has
low occupancy, the performance is always reduced
22.

Figure 7: Exec. time with Tile Size = 16 x 16 and
Thread Block Size = 16 x 16

Figure 8: Exec. time with Tile Size = 32 x 32 and
Thread Block Size = 32 x 32

Figure 7 and 8 show the trend of execution
time for NVIDIA and Parallel Write algorithms with
different space sizes. The results show approxi-
mately same execution time except even with differ-
ent space sizes. However, there are some improve-
ments in performance due to reduction in execution
time for small tile size (16 x 16). Padding column
in tile as in NVIDIA implementation to avoid bank
conflict applies only on the multiple of 32 tile sizes.
Our proposed approach to access shared memory
tile diagonally avoids bank conflict even with non-
multiple of 32 tile sizes. We have analyzed both
the kernels using NVIDIA visual profiler event for
shared bank conflicts. Table 4 shows the profiler re-
sults for bank conflicts with different tile sizes.

Table 4: Bank Conflicts with different tile sizes
Tile Size NVIDIA Proposed
16 x 16 1162330 0
32 x 32 0 0

We have also applied Parallel Write algorithm
in the implementation of recursive gaussian filter
provided in NVIDIA SDK. The code sample im-
plements a Gaussian blur using Deriche’s recursive
method 23. It processes columns of the image par-
allel. While, to make the coalesced read for the
row pass, it transpose the image and then transpose
it back again afterwards. So, it requires to per-
form transpose twice in each step. The results in
figures 9 and 10 shows upto 6% improvement in
performance with Parallel Write algorithm over the
NVIDIA SDK Transpose.

Figure 9: Exec. Time of recursive gaussian using
NVIDIA Transpose and Proposed Parallel Write al-
gorithms

Figure 10: Performance of recursive gaussian using
NVIDIA Transpose and Proposed Parallel Write al-
gorithms

Published by Atlantis Press 
Copyright: the authors 

132



A. Khan, M. Al-Mouhamed, A. Fatayer, A. Almousa, A. Baqais, and M. Assayony

6. Conclusions

Graphic Processor Unit (GPU) gains higher atten-
tion and wider acceptance and recognition these
days as a suitable platform for engineering and sci-
ence application. To achieve better performance,
NVIDIA introduced CUDA, a parallel computing
platform and programming model that enables dra-
matic increases in computing performance by har-
nessing the power of the GPU.

In this work we have studied different imple-
mentations of matrix transpose that illustrate how
to achieve efficient use of GPU memories and data
management. We proposed two implementations for
matrix transpose that perform efficient memory ac-
cesses to global and shared memory by ensuring all
accesses to the global memory are coalesced and
all accesses to the shared memory are bank con-
flict free. The main advantage of our algorithms
is that they eliminate bank conflicts while allocat-
ing exactly the tile size memory space. However, in
the literature 19 they allocate Tx(T+1) space for TxT
tile. Also, padding column in shared memory tile to
avoid bank conflicts applies only on the multiple of
32 tile sizes only. While our approach can also be
applied on non-multiple of 32 tile sizes.

We have also applied the proposed transpose
algorithm to recursive gaussian implementation of
NVIDIA SDK and achieved about 6% improvement
in performance.

References

References are to be listed in the order cited in the
text. Use the style shown in the following examples.
For journal names, use the standard abbreviations.
Typeset references in 9 pt Times Roman.

1. D. Qian and D. Zhu, “Challenges and possible ap-
proaches: towards the petaflops computers.” Frontiers
of Computer Science in China, vol. 3, no. 3, pp.
273289, 2009.

2. A. Moravanszky and N. Ag, “Dense matrix algebra on
the gpu,” in In Direct3D ShaderX2, Engel W. F., (Ed.).
Wordware Publishing. NovodeX AG, 2003, p. 2.

3. Y. Kim and A. Shrivastava, “Cumapz: a tool to ana-
lyze memory access patterns in cuda,” in Proceedings
of the 48th Design Automation Conference, ser. DAC
’11. ACM, 2011, pp. 128133.

4. R. Nath, S. Tomov, T. T. Dong, and J. Dongarra, “Op-
timizing symmetric dense matrix-vector multiplica-
tion on gpus,” in Proceedings of 2011 International
Conference for High Performance Computing, Net-
working, Storage and Analysis, ser. SC ’11. ACM,
2011, pp. 6:16:10.

5. Y. Chen, X. Cui, and H. Mei, “Large-scale fft on gpu
clusters,” in Proceedings of the 24th ACM Interna-
tional Conference on Supercomputing, ser. ICS ’10.
ACM, 2010, pp. 315324.

6. Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka,
“An efficient, model-based CPU-GPU heterogeneous
FFT library,” in IEEE International Symposium on
Parallel and Distributed Processing, 2008, Apr. 2008,
pp. 110.

7. J. Choi, J. Dongarra, and D. W. Walker, “Parallel ma-
trix transpose algorithms on distributed memory con-
current computers.” Parallel Computing, vol. 21, no.
9, pp. 1387 1405, 1995.

8. L. Wang, S. Chen, Y. Tang, and J. Su, “Gregex: Gpu
based high speed regular expression matching en-
gine,” in Fifth International Conference on Innovative
Mobile and Internet Services in Ubiquitous Comput-
ing (IMIS), June 2011, pp. 366370.

9. V. Volkov and J. W. Demmel, “Benchmarking gpus
to tune dense linear algebra,” in Proceedings of
the 2008 ACM/IEEE conference on Supercomputing,
ser.SC’08. IEEEPress,2008, pp. 31:131:11.

10. K. Nakano, “Optimal parallel algorithms for comput-
ing the sum, the prex-sums, and the summed area table
on the memory machine models,” IEICE Transactions
on Information and Systems, vol. 2013, no. 12, pp.
26262634, 2013.

11. J. Aguilar, “Heuristic algorithm based on a genetic al-
gorithm for mapping parallel programs on hypercube
multiprocessors.” Comput. Syst. Sci. Eng., vol. 18, no.
4, pp. 217221, 2003.

12. S. S. Stone, J. P. Haldar, S. C. Tsao, W.-m. W. Hwu,
Z.-P. Liang, and B. P. Sutton, “Accelerating advanced
mri reconstructions on gpus,” in Proceedings of the
5th conference on Computing frontiers, ser. CF ’08.
ACM, 2008, pp. 261272.

13. J. WANG, X. MA, Y. ZHU, and J. SUN, “Auto-tuning
of thread assignment for matrix-vector multiplica-
tion on gpus,” IEICE TRANSACTIONS on Informa-
tion and Systems, vol. E96-D, no. 11, pp. 23192326,
November 2013.

14. D. K. Bogolepov, D. P. Sopin, and V. E. Turlapov,
“Simplified photon mapping for real-time caustics
rendering,” Program. Comput. Softw., vol. 37, no. 5,
pp. 229235, Sep. 2011.

15. V. A. Frolov, A. A. Kharlamov, and A. V. Ignatenko,
“Biased solution of integral illumination equation via
irradiance caching and path tracing on gpus.” Pro-
gramming and Computer Software, vol. 37, no. 5, pp.

Published by Atlantis Press 
Copyright: the authors 

133



Padding Free Matrix Transpose

252259, 2011.
16. I. N. Skopin and D. Y. Tribis, “A method for solving

mass point-in-covering problems for arbitrary cover-
ings using gpu,” Programming and Computer Soft-
ware, vol. 39, no. 3, pp. 158162, 2013.

17. NVIDIA, “Nvidia developer zone,”
http://developer.nvidia.com, NVIDIA Corporation.

18. Z. Xu, Y. He, W. Lin, and L. Zha, “Four styles of paral-
lel and net programming,” Frontiers of Computer Sci-
ence in China, vol. 3, no. 3, pp. 290301, 2009.

19. G. Ruetsch and P. Micikevicius, “Optimizing matrix
transpose in cuda,” NVIDIA Corporation, Tech. Rep.,
June 2010.

20. S. Hong and H. Kim, “An analytical model for a
gpu architecture with memory-level and thread-level
parallelism awareness, ” SIGARCH Comput. Archit.
News, vol.37, no.3, pp. 152163, Jun. 2009.

21. NVIDIA, “Cuda occupancy calculator,”
http://news.developer.nvidia.com/2007/03/cuda
occupancy .html, NVIDIA Corporation.

22. NVIDIA, “Cuda c best practices guide,” NVIDIA
Corporation, Tech. Rep., 2010.

23. R. Deriche, “Recursively Implementing the Gaussian
and Its Derivatives,” in Proc. Second International
Conference On Image Processing, Singapore, Sep. 7-
11 1992, pp. 263267.

Published by Atlantis Press 
Copyright: the authors 

134




