
Cloud Server with OpenFlow: Load Balancing

Surya Prateek Surampalli

Information Technology Department

Southern Polytechnic State University

Marietta, GA, United States

ssurampa@spsu.edu

Ying Qian

Department of Computer Science & Technology

East China Normal University

Shanghai, China

yqian@cs.ecnu.edu.cn

Abstract—in high-traffic Internet today, it is often

desirable to have multiple servers that represent a single

logical destination server to share the load. A typical

configuration comprises multiple servers behind a load

balancer that would determine which server would serve the

request of a client. Such equipment is expensive, has a rigid

set of rules, and is a single point of failure. In this paper, I

propose an idea and design for an alternative load-balancing

architecture with the help of an OpenFlow switch connected

to a NOX controller that gains political flexibility, less

expensive, and has the potential to be more robust to failure

with future generations of switches

I. INTRODUCTION

In today’s increasingly internet-based cloud services, a

client sends a request to URL or a logical server and

receives a response from a potentially multiple servers acts

as a logical address server. Google server is said to be the

best example, the request is sent to server farm as soon as

the client resolves the IP address from the URL [1].

Load balancers are expensive that acts as a reverse

proxy and distributes network or application traffic across

a number of servers. Load balancers are used to increase

capacity (concurrent users) and reliability of applications.

They improve the overall performance of applications by

decreasing the burden on servers associated with managing

and maintaining application and network sessions, as well

as by performing application-specific tasks [1]. Since load

balancers are not basic equipment and run custom software,

policies are rigid in their choices. Specific administrators

are required and also the arbitrary policies are not possible

to implement. Since running policy and the switch are

connected it is reduced to a single point of failure [2].

The order of magnitude will cost less than a commercial

load-balancer if architecture with an OpenFlow switch is

implemented which is controlled by the commodity server

and also provides flexibility for writing patterns which

allow the controller to be applied arbitrary political [1].

If the next generation of OpenFlow switches has the

capability of connecting to multiple controllers, there is a

chance of making the system more robust to abortion by

keeping the any server behind the switch which that acts as

the controller [1].

II. BACKGROUND

A. Load Balancing

Load balancing helps make networks more efficient. It

distributes the processing and traffic evenly across a

network, making sure no single device is overwhelmed [1].

Web servers, as in the example above, often use load

balancing to evenly split the traffic load among several

different servers. This allows them to use the available

bandwidth more effectively, and therefore provides faster

access to the websites they host [3].

Whether load balancing is done on a local network or a

large Web server, it requires hardware or software that

divides incoming traffic among the available servers.

Networks that receive high amounts of traffic may even

have one or more servers dedicated to balancing the load

among the other servers and devices in the network. These

servers are often called (not surprisingly) load balancers

[1].

Load balancing can be performed using dedicated

hardware devices such as load balancers or having

intelligent DNS servers. A DNS server can redirect traffic

data centre with a heavy load or redirect requests made by

customers for a data centre that is less network stretches

from clients. Many data centres use of expensive hardware

load balancing equipment that makes in distributing the

network traffic across multiple machines to avoid

congestion on a server.

A DNS server resolves a hostname to a single IP

address where the client sends the request. To the outside

world there is a logical address that resolves a host name

[3]. This IP address is not associated with a single machine,

but is the type of service that a client requests. DNS can

resolve a host name to a load balancer within a data centre.

But this could be avoided for safety reasons and to avoid

attacks on the device. When a client request comes to the

load balancer, the request is redirected according to the

policy.

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 61

B. OpenFlow Switch

An OpenFlow switch is a software program or hardware

device that forwards packets in a software-defined

networking (SDN) environment. OpenFlow switches are

either based on the OpenFlow protocol or compatible with

it [1].

In a conventional switch, packet forwarding (the data

plane) and high-level routing (the control plane) occur on

the same device. In software-defined networking, the data

plane is decoupled from the control plane. The data plane

is still implemented in the switch itself but the control

plane is implemented in software and a separate SDN

controller makes high-level routing decisions. The switch

and controller communicate by means of the OpenFlow

protocol. The OpenFlow switch on the other hand uses an

external controller called NOX to add rules into its flow

table.

C. NOX Controller

NOX is a network control platform, which provides a

high-level programmatic interface upon which network

management and control applications can be built. In

brevity, NOX is an OpenFlow controller [3]. Therefore,

NOX applications mainly assert flow-level control of the

network meaning that they determine how each flow is

routed or not routed in the network.

The OpenFlow switch is connected to the NOX

controller and communicates over a secure channel using

the OpenFlow protocol. The current design of OpenFlow

only allows one NOX controller per switch. The NOX

controller decides how packets of a new flow should be

handled by the switch. When new flows arrive at the

switch, the packet gets redirected to the NOX controller

which then decides whether the switch should drop the

packet or forward it to a machine connected to the switch.

The NOX controller can also delete or modify existing

flow entries in the switch.

The NOX controller can execute modules that describe

how a new flow should be handled. This provides us an

interface to write C++ modules that dynamically add or

delete routing rules into the switch and can use different

policies for handling flows.

D. Flow Table

A flow table entry of an OpenFlow switch consists of a

header fields, counters and actions. Each flow table entry

stores Ethernet, IP and TCP/UDP header information. This

information includes destination/source MAC and IP

address and source/destination TCP/UDP port numbers.

Each flow table entry also maintains a counter of number

of packets, and bytes arrived per flow. A flow table entry

can also have one or more action fields that describe how

the switch will handle packets that match the flow entry.

Some of the actions include sending the packet on all

output ports, forwarding the packet on an output port of a

particular machine and modifying packet headers (Ethernet,

IP and TCP/UDP header). If a flow entry does not have

any actions, then the switch drops all packets for the

particular flow.

Each Flow entry also has an expiration time after which

the flow entry is deleted from the flow table. This

expiration time is based on the number of seconds a flow

was idle and the total amount the time (in seconds) the

flow entry has been in the flow table. The NOX controller

can chose a flow entry to exist permanently in the flow

table or can set timers which delete the flow entry when

the timer expires.

III. LOAD-BALANCER DESIGN

Load balancing architecture comprises an OpenFlow

switch with a control device of NOX and server machines

connected to output ports of the switch server. The

OpenFlow switch uses an interface to connect to the

Internet. Each server has a static IP address and NOX

controller maintains a list of currently connected to the

OpenFlow switch servers. Each server is running web

server emulation on a well known port.

Figure1. Load-balancer architecture using OpenFlow switch and NOX
controller

The hostname of server to IP address is resolved by

each client and a request is sent to that IP address on the

known port number. If you consider the above diagram,

when a packet is reached to the switch from the client, the

header information of the packet is compared with the

entries of the flow table. If the header information of the

packet corresponds to an inlet of the flow, the counter for

the number of packets, the byte count is incremented, and

the actions associated with the input of the flow are

performed on the packet. If no match is found, the switch

forwards the packet to NOX.

NOX decides how the packet for this flow should be

handled by the switch. NOX and then inserts a new article

in the cash flow of the switch using the OpenFlow protocol.

To achieve load-balancing features, the modules should be

written in C++ that is executed by NOX controller. NOX

should perform the function of handle () when a new flow

62

arrives at the switch. This function sets the load balancing

policy and adds new rules in the flow table of the switch.

All client requests should be destined for the same IP

address, then whatever the module is executed by NOX,

should add rules for each flow which can modify the

destination MAC and IP address of the packet with a

server’s MAC and IP address. The switch will forward the

packet to the server output port after modifying the packet

header.

When servers return a packet to the client, the module

adds an entry flow that changes the source IP address with

the IP address of the host that the client sends its request.

So the client should always receive packets from the same

IP address. If the client connection / server connection is

closed or remains idle for 10 seconds, then the inactivity

timer expires causing the input stream to be deleted from

the cash flow of the switch. This allows input stream

recycling.

 Servers wait for a NOX to register and then report their

current load on some schedule similar to the Listener

Pattern. NOX in a separate thread listening on a UDP

socket for heartbeats with reported by server loads and

maintains a table with the current loads of all servers.

When applying for a new stream is received, it chooses the

server with the lowest and the load current increases to the

low current server. This prevents flow of all flows routed

to the same server as the server reports a new load. It also

breaks ties by turning it into a round robin until the servers

report their actual load heartbeat.

Flow Algorithm

Require: Flow, path

1: sourceHost = LocateSource(flow);

2: destinationHost = LocateDestination(flow);

3: layer = setToplayer();

4: currentSwitch = LocateCurrentSwitch();

5: direction = 1; //upward

6: path = null; //list of switches

7: return search ();

This algorithm works as follows. When the OpenFlow

controller receives a packet from a switch, it switches the

control to the load balancer. Line 1 to 6 introduces the

initialization for necessary variables. The load balancer

firstly analyses the packet’s match information including

the input port on the switch that receives the packet as well

as the packet’s source address and destination address.

Then it looks up those addresses using its knowledge about

the network topology. Once the source and destination

hosts are located, the load balancer calculates the top layer

that the flow needs to access. We use the search direction

flag. The flag has two values: 1 for upward and 0 for

downward. It is initialized to 1. A path is created for

saving a route grouped by a list of switches later. Line 7

calls search () that performs the search for paths

recursively.

In the method search (), It firstly adds current switch into

path. It returns the path if current search reaches the

bottom layer. It reverses the search direction if current

search reaches the top layer. Then it calls a method

1: search () {

2: path.add(curSwitch);

4: if isBottomLayer(curSwitch) then

5: return path;

6: end if

7: if curSwitch.getLayer () == layer then

8: direction = 0; //reverse

9: end if

10: links = findLinks(curSwitch, direction);

11: link = findWorstFitLink(links);

12: curSwitch = findNextSwitch(link);

13: return search ();

14: }

that returns all links on current switch that are towards

current search direction. Only one link is chosen by

picking up the worst-fit link with maximum available

bandwidth. And then the current switch object is updated.

The method search () is called recursively layer by layer

from the source to destination. At last the path will be

return to the load balancer. The path information will be

used for updating flow tables of those switches in the path.

Flow Scheduling

The Flow scheduling functionality works as follows. Each

OpenFlow switch maintains its own flow table. Whenever

any packet comes in, the switch checks the packet’s match

information with the entries in its flow table. The packet’s

match information includes ingressPort, etherType, srcMac,

dstMac, vlanID, srcIP, dstIP, IP protocol, T CP/UDP

srcPort, TCP/UDP dstPort. If it finds a match, it will send

out the packet to the corresponding port. Otherwise it will

encapsulate the packet in a PACKET IN message and send

the message to the controller. As a module of the

OpenFlow controller, the load balancer will handle the

PACKET IN message. It finds a proper path by executing a

search with the DLB algorithm described in Algorithm 1.

The path is a list of switches from source to destination of

the packet. Then the load balancer creates one FLOW

MOD message for each switch in the path and sends it to

the switch. This message will have the packet’s match

information as well as an output port number on that

switch. The output port number is directly calculated by

the path and network topology. If one switch receives a

FLOW MOD message, it will use it to update its flow table

accordingly. Those packets buffered on ports of that switch

may find their matches in the updated flow table and be

sent out. Otherwise the switch will repeat this process.

63

IV. FUTURE WORK

The OpenFlow specification includes an optional

feature that would allow multiple NOXs to make active

connections to the switch. In the case when the NOX is

failing, another machine could resume the role of the NOX

and continue routing traffic. Naturally the system would

need to detect the failure, have a mechanism to remember

any state associated with the current policy, and all servers

would have to agree on who the new NOX was. These

requirements naturally lend themselves to the Paxos

consensus algorithm in which policy and leader elections

can be held and preserved with provable progress [3]. We

have implemented Paxos in another research project and

could add it to our server implementation at the

controller/signaller layer. As long as at least half of the

nodes in the cluster stay up, state will be preserved and

traffic should continue to flow.

V. CONCLUSION

It is possible to achieve similar functionality to a

commercial load balancer switches using only physical

commodities. The OpenFlow switch provides the

flexibility to implement the arbitrary policy in software

and politics separate the switch itself. Since the policy is

decoupled from the switch, we can avoid the machine

implementation of the policy of a single point of failure

and provide a more robust system.

REFERENCES

[1] OpenFlow Switch Specification. Version 0.8.9 (Wire Protocol 0x97).

Current maintainer: Brandon Heller (brandonh@stanford.edu).

December 2, 2008.
[2] Web caching and Zipf-like distributions: evidence and implications.

Breslau, L. Pei Cao Li Fan Phillips, G. Shenker, S. Xerox Palo Alto

Res. Center, CA. INFOCOM 1999.
[3] Paxos Made Simple. Leslie Lamport

[4] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity

Data Center Network Architecture. ACM SIGCOMM, 2008.
[5] C. E. Leiserson. Fat-trees: Universal networks for hardware-efficient

supercomputing. IEEE Transactions on Computers, 1985.

[6] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding
Datacenter Traffic Characteristics. SIGCOMM WREN workshop,

2009.

[7] HOPPS, C. Analysis of an Equal-Cost Multi-Path Algorithm. RFC
2992, IETF, 2000.

[8] W. J. Dally and B. Towles. Principles and Practices of Interconnection

Networks. Morgan Kaufmann Publisher, 2004.
[9] S. Kandula, S. Sengupta, A. Greenberg, P. Patel and R. Chaiken. The

Nature of Data Center Traffic: Measurements & Analysis. ACM IMC

2009.
[10] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.

Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling

Innovation in Campus Networks. ACM SIGCOMM CCR, 2008.
[11] R. N. Mysore, A. Pamporis, N. Farrington, N. Huang, P. Miri, S.

Radhakrishnan, V. Subramanya, and A. Vahdat. PortLand: A

Scalable, Fault-Tolerant Layer 2 Data Center Network Fabric. ACM
SIGCOMM, 2009.

[12] Beacon OpenFlow Controller

https://OpenFlow.stanford.edu/display/Beacon/Home.

[13] B. Lantz, B. Heller, and N. McKeown. A Network in a Laptop:

Rapid Prototyping for Software-Definded Networks. ACM

SIGCOMM, 2010.

[14] Y. Zhang, H. Kameda, S. L. Hung. Comparison of dynamic and

static load-balancing strategies in heterogeneous distributed systems.
Computers and Digital Techniques, IEE, 1997.

[15] OpenFlow Switch Specification, Version 1.0.0.

 http://www.OpenFlow.org/documents/OpenFlow-spec-v1.0.0.pdf.
[16] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R.

Johari. Plug-n-Serve: Load-balancing web traffic using OpenFlow.

ACM SIGCOMM Demo, 2009.
[17] R. Wang, D. Butnariu, J. Rexford. OpenFlow-Based Server Load

Balancing Gone Wild. Hot ICE, 2011.

[18] M. Koerner, O. Kao. Multiple service load-balancing with OpenFlow.
IEEE HPSR, 2012.

Figure 2: Load-Balancer block diagram architecture using OpenFlow

switch and NOX controller.

64

https://openflow.stanford.edu/display/Beacon/Home
http://www.openflow.org/documents/OpenFlow-spec-v1.0.0.pdf

