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Abstract—Sensitivity analysis (SA) is an important part in 

engineering design under the uncertainty to provide valuable 

information about the probabilistic characteristics of a 
response. In this paper, the variance-based methods and the 

cumulative distribution function (CDF)-based sensitivity 

coefficients were used in sensitivity analysis. The 

combination of sparse grid stochastic collocation (SC) and 

the generalized polynomial chaos (gPC) are proposed as a 

method to perform the sensitivity analysis. The 

computational method employs the gPC as a high-order 

representation for random quantities, a stochastic 
collocation (SC) approach to deal with complex/implicit 

response functions, and sparse grid to use a reduced set of 

samples. It can reduce the computational cost associated 

with uncertainty assessment without much sacrifice on the 

optimum solution. The effectiveness is demonstrated in two 

numerical examples. 

Keywords- Generalized Polynomial Chaos; Sensitivity 

Analysis; Stochastic Collocation; Sensitivity Coefficient; 
Uncertainty 

I. INTRODUCTION  

The traditional sensitivity analysis problem is a stage 
when a system is designed to find the rate of change in a 
model output due to change in the model input. Such an 
analysis is an important part in the assessment of the safety 
and reliability of structures, it has been widely applied in 
engineering design to test the validity of the assumptions 
made, to explore the model response behavior, to evaluate 
the accuracy of a model, etc., which has received 
increasing attention and widely acknowledged in a variety 
of engineer design and product development process. 

Various sensitivity analysis methods, especially 
probabilistic sensitivity analysis (PSA) methods exist in 
the literature. However, a major challenge in engineering 
applications lies in the fact that high computational costs 
have to be faced. For example, one of the most commonly 
used methods is Monte Carlo methods or one of its 
variants. Although Monte Carlo methods are 
straightforward to apply, as they are low-order methods 
that provide high-fidelity results only at (often) 
prohibitively large computational costs, typically a large 
number of executions need, for the statistics converge 
relatively slowly. The need for large number of 
realizations for accurate results can incur excessive 
computational burden. For example, the mean value 

typically converges as K1 , where K is the number of 

realizations (e.g.[1]).This high degree of difficulty in 
obtaining accurate stochastic solutions has hindered the 
applications of reliability-based design to a wide variety of 
practical engineering problems. 

In this paper, Sobol' indices [2] and Wu's sensitivity 
coefficients [3] as the indices of sensitivity analysis are 
employed. Sobol' indices are one kind of variance-based 
methods and Wu's sensitivity coefficients are one kind of 
the cumulative distribution function (CDF)-based 
sensitivity coefficients. The generalized polynomial chaos 
(gPC)-based work on stochastic computations to 
sensitivity analysis is extended. As an alternative approach, 
it is able to produce accurate stochastic solutions at much 
reduced computational costs--in many cases several orders 
faster than classical sampling methods. The sparse grid 
stochastic collocation (SC) method [4] is also 
demonstrated particularly useful in evaluating various 
statistics, e.g. mean and variance, of system responses with 
high accuracy and therefore can greatly speed up the 
overall computations of sensitivity analysis. 

II. METHODS FOR SENSITIVITY ANALYSIS 

In general, the sensitivity analysis of system (the 

performance function or the transfer function) can be 
defined as 

        ),( ZXYY                            (1) 

here 
d

d RxxxX  ),,,( 21   is the design variable 

vector and 
m

m RzzzZ  ),,,( 21   is a input random 

variable vector (also referred to as parameter vector) 
vector), Y is an output or response variable representing 

product or system performance. 
The goal of sensitivity analysis is to take into account 

the impact of uncertainties in design variables and input 
parameters on the probabilistic characteristic of the system 
(or the design performance). The word impact has different 
meanings under different design scenarios. For robust 
design, the goal of PSA is to identify those random 
variables which contribute the most to the variance of a 
response. In other words, if reducing the uncertainties in 
these random variables, the variance of a response could 
be reduced at the most. For reliability-based design, it 
means the contribution of reducing different sources of 
uncertainty to the improvement of the probability of a 
design constraint satisfaction. That is to say, the objective 
is to identify those random inputs which have the most 
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influence on the probability of meeting a pre-specified 
target. This is particularly important if a target could not be 
satisfied with a required probability level. 

A. Sobol’ indices – Variance-Based Methods 

Sobol' method [2] for variance estimation is based on 

an ANOVA-like decomposition of a function with an 

increasing dimensionality, is a variance-based method. 
Variance-based methods are derived from the 

decomposition of the total variance of a model response to 

different variation sources and their combinations. 

From Equation (1), supposed the variance of Y  is V , 

the sensitivity analysis are based on the decomposition of 

V , i.e. 

m

ji

iji VVVV .,2,1  


                     (2) 

here iV   represent the partial variance in the response due 

to the individual effect of a random variable iz , the 

higher order terms show the interaction effects between 

two or more random variables. 
The decomposition induces two important concepts: 

the main effect and the total effect. The main effect index 

can be shown in Equation (3): 

miVVS ii  1                         (3) 

The main effect index of a random variable iz  is 

obtained by the normalization of the main effect variance 

over the total variance Y . 

There iV  is the partial variance in the response to the 

individual effect of a random variable, so the sensitivity 

index for the interaction between two random variables 

iz  and jz  is 

mjiVVS ijij  1                (4) 

The general sensitivity index is shown as follows 

VVS miimii ,.1,,.1,                   (5) 

The total effect of a random variable iz
 can be 

presented 

iT SS
i 1  

It includes iz ’s main effect and the interaction effect 

involving iz . Where miii SS ,,1,1,,2,1     is the index 

for the combined effect of all random variables except iz . 

Obviously, the variance-based methods can be 

directly applied to PSA in robust design as they matches 
with the objective of minimizing the response variance in 

robust design. 

B. CDF-based sensitivity coefficients 

Wu [3] derived the so-called CDF-based sensitivity 

coefficients for the probability, it discusses the rate of 

change in a probabilistic characteristic of a response Y  
due to the changes in the probabilistic characteristics of a 

random input iz , such as 
izY   and 

izY   [5]. 

In general, with respect to a distribution parameter  can 

be evaluated from 

dx
fp z

 








 
  

where p  denotes sensitivity, f  is the joint 

probability density function of all random variables ,   is 

the distribution parameter,   denotes that the expected 
value is evaluated using the joint probability density 

function (PDF) in the region. 
Therefore, the sensitivity coefficients can be defined as 

[3] 
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    (6) 
Based independent normal variables, Equation (6) 

can be simplified as 
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which is the mean sensitivity coefficient and the standard 

deviation sensitivity coefficient[3], respectively, in which 

i  and i  are the mean and the standard deviation, of 

the random variable iz , the use of the standard deviation 

as a scale factor implies that the allowable design range of 

a mean value is limited to a local region characterized by 

the random variable variability , where E[.] is the 

expectation operator, u  is a vector of standard normal 

random variables transformed from Z ,   is the joint 

PDF of u . If Z  follows independent normal distributions, 

then the transformation is simply 

i

ii

i

z
u




                                    (9) 

Otherwise, when the random variables iz ’s are non-

normal and mutually dependent, it can be transformed to 

mutually independent normal variables iu , using the 

following transformation [6] 

  11

1

1 zFu   

   mizzzzFu iiii ,,3,2,,, 121

1   


             (10) 

where iF  is the original cumulative density function 

(CDF) of random variable iz , 1  is the inverse 

standardized normal CDF, and iu ’s are the standard 
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normal random variables with zero mean and unit 

standard deviation. 

III. FAST METHODS FOR SENSITIVITY ANALYSIS 

A. Generalized Polynomial Chaos  

Generalized polynomial chaos (gPC) [7], a 
generalization of the classical polynomial chaos [, are able 
to produce accurate stochastic solutions at much reduced 
computational costs—in many cases several orders faster 
than classical sampling methods. Compared to perturbation 
methods, gPC offers convergence even for large levels of 
uncertainty and is more robust and accurate. This is an 
extension of the seminal work of Ghanem and Spanos on 
the classical polynomial chaos where only Hermite 
polynomials are used. Such kinds of orthogonal 
polynomial expansions exhibit fast convergence under 
sufficient conditions [7]. 

Generalized polynomial chaos (gPC) is a polynomial 
representation/approximation of random variables and 
processes in random space, to seek approximate a random 
function via orthogonal polynomials of random variables 
essentially. 

For a performance function ),( ZXY , a finite order, 

Pth-order, gPC approximation is 

    



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ii

P

m ,ˆ),(
1

           (11) 

Here   Zi  is a set of m -variate (the same as the 

length of the random variable vector Z ) orthogonal 

polynomials of total degree up to P , and the total 

number of basis functions is 







 


m

Pm
M , and it 

satisfying the orthogonality conditions 

         ijjiji dZZfZZZZE   )(      (12) 

Where ij is the Kronecker delta function and the 

polynomials have been normalized to be orthonormal. 

 Zf  is the probability density function of Z , it serves as 

a role of integration weight, and it defines the type of 

orthogonal polynomials   Zi . For example, uniform 

distributions are associated with Legendre polynomials, 

and Gaussian distributions are associated with Hermite 
polynomials.  

The Fourier coefficients in (11) are defined as 

             MiZZYEdZzfZZYXY iii ,,2,1ˆ     (13) 

The error of this finite-order projection can be 

defined as 

     
2

,,
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P

mG ZXYZXYX               (14) 

and will converge to zero in the mean square sense as the 

order of approximation P is increased,  i.e. 
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        (15) 

Therefore, we can use  ZXY P

m ,  as an approximation 

instead of  ZXY , . 

B. Stochastic collocation (SC) 

In practice, the definition (13) of the expansion 

coefficients is not useful as the response function  ZXY ,  

is usually unknown. One then needs to construct 

numerical procedures to solve for the coefficients 
approximately. 

Therefore, we again seek an approximate solution to 

the observable Z  in the form of gPC expansion in 
stochastic collocational approach 

      MiZZYXY
Q

j
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j

i ,,2,1
~
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)()()( 


         (16) 

Here  Q

j

jjZ
1

)()( ,


  are a set of nodes and weights, 

where  j

m

jjj zzzZ ,,, 21

)(   and 
 j  denote the j-th 

node and its associated weights, Q is the number of nodes. 
With such a choice of the nodal set, (16) approximates (13) 

approaches zero as Q . 

C. Choices of nodal set 

The choice of the nodal set is the key issue in SC 
method in order to make (16) accurate and efficient, it is 
essential that the nodal set is a good cubature rule such that 
multiple integrals can be well approximated by a weighted 
discrete sum in the form of (13). Many choices are 
available in one-dimensional (m=1) space, for sufficiently 
smooth integrand, one of the optimal choices is quadrature 
rules based on orthogonal polynomials   Zi  in (12), it 

is usually the Gauss quadratures [8]. The challenge is in 
multi-dimensional spaces with m>1, especially for large 
dimensions m>>1. 

In this paper, the Smolyak sparse grid is employed to 
use the sensitivity analysis for system, because it offers a 
systematic way of increasing accuracy, and therefore can 
achieve highly accurate results. 

Other choices of nodal set can be sought for (16), those 
obtained by cubature rules or design of experiments, are 
also viable. For example, one can employ Monte Carlo 
method, where the nodes are randomly generated and 

  QjQj ,,11  .  However, the (relatively) larger 

statistical errors due to the (relatively) slower convergence 
of Monte Carlo method may incur large aliasing errors. 

Subsequently, an approximation of the true gPC 

expansion can be express as  
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In other word, (17) is an approximation of the exact 

gPC expansion (11), and the overall mean-square error 

can be bounded by 

   
2
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The error be controlled in practice, and can be refined 
by increasing the order of the gPC expansion, and the 
accuracy of the integration rule, etc. For more detailed 
discussions see [10]. 

D. gPC-based sensitivity analysis 

When combined sparse grid stochastic collocation 

approach with gPC in a polynomial form of (17), and 

various post-processing procedures can be carried out to 
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obtain statistics, efficient numerical methods can be 

readily constructed for complex engineering systems with 
uncertainty. 

The mean value is the first expansion coefficient 
1

~
Ŷ , 

i.e. 
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The variance can be evaluated as 
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22
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where the first mode (the mean mode) 
1

~
Ŷ  is excluded 

from the summation [11]. 
Thus, the Sobol’ indices can be evaluated when 

equation (18) and (19) are employed, and the Wu’s 

sensitivity coefficients of CDF-based can be 

approximated conveniently by using (20) 
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where the terms   ii zZ   are the derivatives of the 

polynomials and can be calculated conveniently. With the 

sparse grids SC-based are used and the sensitivity 
derivatives available, the Wu’s sensitivity coefficients can 

be approximated. 

In summary, when the design variable vector X is 

known, the sensitivity analysis procedure consists of the 
following steps: 

Step1: Determine the basis function  Z  type 

according to the distribution of Z. 

   Step2: Choose a collocation nodal set  Q

j

jjZ
1

)()( ,


  for 

the random vector Z. 

Step3: Evaluate the performance function 

   )()( , jj ZXYZY  . 

Step4: Evaluate the approximate gPC expansion 

coefficients via Equation (16). 
   Step5: Compute sensitivity coefficients through 

equation (18), (19), (20). 
Step6: Determine the sensitivity of each random variable 

according to the value of sensitivity coefficients. 

IV. NUMERICAL EXAMPLES 

A. A Mathematical Example 

Consider a simple nonlinear model for a performance 

function as follows 

  







 3

31
2

1
ln1sin 2 zezY

z

 
where  321 ,, zzzZ   are three independent Gaussian 

random variables with zero mean and standard deviation 1, 

i.e.   3,2,11,0~ iNzi .  

From equation (19), we can evaluate the variance 
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


M

i

i XYYVar
2

2
~
ˆ][  of Y to use sparse grids SC-based. 

When 3,2,1izi  is fixed its mean value respectively, 

the variance of different variation sources and their 

combinations can be evaluated. Therefore, the main effect 

indices and total effect indices of a random variable is 
computed that shown in Table 1, where the orthogonal 

polynomials of total degree up to 2, total number of nodes 

SC-based sparse grid is 25 . 

TABLE I.  COMPUTATION   RESULT 

Method Number of 
realizations 

Random 
Variable 

Effect Indices 

main effect  total effect 

This paper’s 

method 
25 

 

z1 5.6296e-

007 

0.4071 

z2 3.8023 e-

006 

0.7837 

z3 0.0177 0.9836 

Monte Carlo 100000 z1 5.5099e-

007 

0.4121 

z2 8.0354e-

006 

0.7561 

z3 0.0183 0.9982 

 

From Table 1, it is noted that the random parameter 

3z  is the most critical. In other word, 3z  is the most 

sensitive, there is a greatest impact on the system that by 

reducing or increasing the same amount of variance 3z  

leads to the largest reliability increase or reduce than any 
other variables, we need control it carefully in solving 

practical problems. 

We define the error for the effect index 

MCi

MCii

S

SS 
  

where iS  is iz ’s effect index through this paper’s 

method, MCiS is iz ’s effect index through Monte Carlo 

simulation method, we can calculate the error for the 
effect index are lower than 4%. 

With the result of Table 1, we can see this paper's 
method has almost the same precision with Monte Carlo 
simulation, but it much faster than Monte Carlo simulation. 

For example, the CPU time of 3z 's main effect is 0.46 

seconds, and its the CPU time is 9.31 seconds with Monte 
Carlo simulation. Here, the CPU time based on Intel Core 
Duo CPU T6600, installed memory 4.00GB, 64-bit 
Operating System. 

B. A Cantilever Beam Example 

In this example, a cantilever beam in vertical and 

lateral bending [11] is used (see Fig. 1). The beam is 
loaded at its tip by the vertical and lateral loads Y and Z, 

respectively. Its length L is equal to 100 in. The width w 

and thickness t of the cross-section are random design 

variables. 

 
Figure 1.  Cantilever beam under vertical and lateral bending 
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One non-linear failure mode is used representing 

yielding at the fixed end of the 

cantilever.   







 Z

tw
Y

wt
ytwYZyG

22

600600
,,,,  

represents the failure mode. 

The random design variables w and t are normally 

distributed with 225.0 tw   . ZY ,  and y  are 

normally distributed random parameters with 

 100,1000~ NY lb,  100,500~ NZ lb, 

 2000,40000~ Ny psi ; y  is the random yield strength, 

Y  and Z are mutually independent random loads in the 
vertical and lateral directions respectively. 

Table 2 shows the CDF-based sensitivity coefficients 

of each random variable. 

TABLE II.  CDF-BASED SENSITIVITY COEFFICIENTS OF RANDOM 

VARIABLES 

 w t Y Z y 

S

 

4.416953e-

003 

-3.20860 

9e-003 

-1.369552e-

002 

4.01655

7e-002 

-9.16878 

0e-004 

S

 

-1.15936 

8e-003 

-4.14454 

8e-003 

9.897566e+00

1 

9.91743

8e+001 

3.686898

e-003 

 

It is observed that the importance rankings of random 

variables for each CDF-based sensitivity coefficients from 

Table 2. For example, random variables ZY ,  are more 

sensitive than others are. From Fig. 2, we can see the 
same result. Fig. 2 shows the relationship of each random 

variable variance reduction and the sensitivity 

improvement. It is confirmed in Fig. 2 that by reducing 

the same amount of variance, ZY ,  leads to the largest 

sensitivity increase than any other variables. 

 
Figure 2.  The relation of improvement sensitivity and variance 

reduction 

V. CONCLUSION 

Sensitivity analysis is a useful tool in design under 
uncertainty by providing valuable information of the 

impact of uncertainty sources. It can be used to identify 

those insignificant variables and to reduce the design 

problem dimension. In reliability-based design, some 
design parameters can be adjusted. These parameters 

might be deterministic, such as tightly controlled 

geometries. Reliability improvements could be achieved 

by a combination of various design modifications such as 
tightening tolerances, using better materials, or changing 

geometries. A decision analysis based on the cost, 

manufacturing, and other design considerations may be 

performed to select an optimal design. Upon a design 
change, a reanalysis should generally be conducted to 

confirm the improved reliability. 
In this paper, a computationally efficient and fast 

method for sensitivity analysis, based on generalized 
polynomial chaos representation for random quantities and 
a stochastic collocation (SC) approach choice of the nodal 
set, has been presented. The effectiveness and feasibility of 
the method is demonstrated by two numerical examples. 
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