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Abstract

Fuzzy c-means is a well known fuzzy clustering al-
gorithm. It is an unsupervised clustering algorithm
that permits us to build a fuzzy partition from data.
The algorithm depends on a parameter m which
corresponds to the degree of fuzziness of the solu-
tion. Large values of m will blur the classes and
all elements tend to belong to all clusters. The so-
lutions of the optimization problem depend on the
parameter m. That is, different selections of m will
typically lead to different partitions.

In this paper we study and compare the effect of
the selection of m obtained from the fuzzy c-means.

Keywords: Fuzzy clustering, Fuzzy c-means, pa-
rameters of FCM, m.

1. Introduction

Fuzzy clustering has been extensively used to ex-
tract knowledge from data. Fuzzy c-means [1] (see
also e.g. [3, 4]) is one of the most used fuzzy clus-
tering algorithms. It is a fuzzy generalization of
k-means in which membership of elements to clus-
ters is fuzzy. That is, the elements can belong to
more than one cluster at the same time.

Fuzzy c-means is not the only fuzzy clustering
algorithm. There are several families [5, 7, 2, 8] (e.g.
entropy fuzzy c-means and possibilistic clustering)
and variants (e.g. variable-size fuzzy c-means [6,
11]).

Fuzzy c-means depends on two parameters. One
is the number of clusters. The other is the param-
eter m which stands for the degree of fuzziness in
the solution. When m is close to one, the solution
of the fuzzy c-means algorithm is similar to the one
of k-means. Elements are basically assigned to only
the nearest cluster and membership to others clus-
ters is negligible. On the contrary, when m is large,
fuzziness is also large and clusters are blurred. El-
ements tend to belong to all clusters with the same
membership. Because of that, large values of m are
not used. Typical values for the parameters m are
between 1 and 2.

There are problems in which the membership de-
gree of an element to the class is of relevance. This
is the case of classification problems. In a multi-
class problem we can e.g. select the k highest mem-
bership degrees. The membership values are used
for this selection. In [10], we considered the prob-
lem of assigning elements to clusters according to
a probability distribution based on the membership

degrees. This application was in data privacy, and
the assignment was to hide memberships and in-
troduce some uncertainty to any intruder. That is,
there is no certainty that elements are assigned to
the nearest clusters.

When membership is of relevance, the selection
of a value m is very important. Different values will
lead to different memberships. At the same time,
clusters will be shaped by the value selected. In
addition, we can also prove that large values of m
lead to solutions (partitions) that are not of interest.

In this work we study the effect of the parame-
ter m in fuzzy c-means. We are interested on two
types of effects. On the one hand, we are interested
in knowing the general effect of the parameter m in
the solution. Not only on the membership degrees
of the data, but also on the effect on the centroids
found. On the other hand, we want to know in what
extent given a solution of fuzzy c-means for a given
m, if we use later a different m′ for computing mem-
bership degrees, this implies an important difference
when comparing the respective objective functions.
Expressing as in the first type of problem, this is to
consider whether the approximate solution for m is
acceptable for m′.

We do these analyses empirically, comparing the
results of fuzzy c-means for a few data files using
different values of c and m (the two parameters
of fuzzy c-means). The comparison takes into ac-
count the difficulties of comparing fuzzy c-means
results. It is well known that the practical applica-
tion of these clustering algorithms poses an impor-
tant problem. Fuzzy c-means algorithms typically
lead to solutions that are a local optima of the opti-
mization problem. In addition, several executions of
the algorithm lead usually to different local optima.
Because of that, when comparing different results
we need to be sure that we are near enough to the
global optima. We have taken this into account in
our experiments.

The structure of this paper is as follows. In Sec-
tion 2 we review the fuzzy c-means algorithm. In
Section 3 we describe the experiments considered.
The paper finishes with some conclusions and lines
for future research.

2. Fuzzy c-means

Fuzzy clustering algorithms permit us to extract
structures from data in which overlapping between
clusters is permitted. Fuzzy c-means belongs to the
family of algorithms that build fuzzy partitions. A
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fuzzy partition is defined as follows.

Definition 1 Let X be a reference set. Then, a
set of membership functions M = {µ1, . . . , µc} is a
fuzzy partition of X if for all x ∈ X it holds

c
∑

i=1

µi(x) = 1

We give now the formalization of fuzzy c-means
as well as the typical algorithm to solve this op-
timization problem. We will consider the following
notation. We have a set of objects X = {x1, . . . , xn}
and we want to build c clusters from these data. The
value c is one of the parameters of the algorithm
and should be given by the user. Then, the method
builds the clusters which are represented by mem-
bership functions µik, where µik is the membership
of the kth object (xk) to the ith cluster.

Besides of c, fuzzy c-means requires another pa-
rameter m. This value should be m > 1. The larger
the m, the larger the fuzziness in the clusters. With
values near to 1, solutions tend to be crisp. With
large values of m, membership values tend to be all
µik = 1/c.

FCM formulates the construction of µ from X as
the solution of a minimization problem. This prob-
lem is formulated as follows using vi to represent
the cluster center, or centroid, of the i-th cluster.

MinimizeJF CM (µ, V ) = {

c
∑

i=1

n
∑

k=1

(µik)m||xk − vi||
2}

(1)
subject to the constraints µik ∈ [0, 1] and
∑c

i=1
µik = 1 for all k.

This optimization problem is usually solved by
means of the iterative process described in Algo-
rithm 1. In short, the algorithm interleaves two
steps. One in which the membership values are es-
timated assuming known centroides, and the other
in which the centroides are estimated assuming that
memberships are known. The algorithm converges
to a local optimal solution of the optimization prob-
lem formulated above.

We cannot ensure that this algorithm leads to a
global optimum. Convergence is ensured because
at each step the value of the objective function is
reduced. Nevertheless, we can converge to a local
optimum.

When we are interested in studying and compar-
ing the solutions of FCM, this usually causes diffi-
culties. More specifically, different executions will
typically lead to different solutions, and their com-
parison will show divergences that may only be due
to the convergence to different values in the space
of solutions. We discussed this problem in [9]. In
order to reduce the problems caused by computa-
tion, we will execute the FCM several times and
among all solutions we will select the one with a
lower objective function.

Algorithm 1 Fuzzy c-means

Step 1: Generate initial V

Step 2: Solve minµ∈MJ(µ, V ) computing:

µik =
(

c
∑

j=1

( ||xk − vi||
2

||xk − vj ||2

)
1

m−1

)−1

Step 3: Solve minV J(µ, V ) computing:

vi =

∑n
k=1

(µik)mxk
∑n

k=1
(µik)m

Step 4: If the stop condition does not hold, go
to step 2; otherwise, stop

Let

< OF, v >= FCM(X, m, c)

represent the application of FCM to data X with
parameters m and c. We have that in general, t
applications of this algorithm may lead to t different
sets of cluster centers and t different values of the
objective function. Let FCMs(X, m, c) represent
the sth application of this algorithm. Then, we use

< OF, v >= argmins∈SFCMs(X, m, c)

with minimum over all objective functions, to rep-
resent the selection of the best solution. Here, the
best solution is the one with a lower objective func-
tion.

For a large enough set S, the probability of find-
ing the global optimum can be large enough. As we
detail later, we have been using sets S of between
20 and 2000 executions.

As stated above, fuzzy c-means uses the param-
eter m to settle the degree of fuzziness. This value
should be m > 1. It is known that the larger the m,
the larger the fuzziness in the clusters. More specif-
ically, with values of m near to 1, solutions tend to
be crisp and when m increases largely, membership
values tend to be all µik = 1/c. The following toy
example illustrates this fact.

Example 1 Let us consider the data in Table 1.
We consider their clustering with c = 4 and a few
different values of m, and also the outcome of the
objective function when we consider the following
cases:

• Crisp partitions with cluster centers in posi-
tions (1, 1), (1, 5), (5, 1), and (5, 5). We say
that there are four clouds (in order to avoid
the use of the term cluster) around these four
centers. Partitions are defined according to the
nearest center. So, we obtain four distinctive
clusters. This solution is what we would expect
from k-means clustering.
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• Fuzzy membership with value 1/c to all clusters
and all cluster centers in the center of the data
(i.e., formally, a single cluster with its center
in position (3, 3)). The objective function is

c
∑

i=1

n
∑

k=1

(1/c)m||xk − c(3, 3)||2.

• Fuzzy membership with value 1/c to all clus-
ters but four different cluster centers, each at
the center of the corresponding cloud (i.e., clus-
ter centers in positions (1, 1), (1, 5), (5, 1), and
(5, 5). The objective function is

∑

(1/c)m [ ||xk − c(1, 1)||2

+ ||xk − c(1, 5)||2

+ ||xk − c(5, 1)||2

+ ||xk − c(5, 5)||2]

• Fuzzy membership values according to the result
of the fuzzy c-means algorithm.

Tables 2 and 3 give the objective functions of these
alternative solutions for a few values of m. They
are, respectively, in columns HCM, of1c (for objec-
tive function with one single cluster center), of4c
(for objective function with four different cluster
centers), and fcm.

This simple example shows that on the solely ba-
sis of the values of the objective function the results
of the fuzzy c-means are not always better than the
ones of HCM. We will see in more detail in the next
section that the solution of fuzzy c means obtained
with large m is not always optimal, and other ap-
proaches are preferable for finding the best partition.

In addition, for m = 3 and m = 4, the solutions
of fuzzy c-means tend to be such that all cluster cen-
ters are in positions (3, 3). For m = 2, the best solu-
tion has cluster centers in (1.21, 1.21), (1.21, 4.78),
(4.78, 1.21) and (4.78, 4.78).

3. The effects of the parameter m

We have studied how the parameter m affects the
outcome of the optimization problem doing two dif-
ferent types of experiments.

The first type of experiments consists of studying
large values of the parameter m and how they in-
fluence the solution of the optimization process. As
we will discuss later, the solutions are not accurate
when m is large and we propose an alternative ap-
proach, instead of applying the clustering algorithm
with the given m.

The second type of experiments is to compare the
partitions the algorithm delivers with different m.
We will see that the partitions disagree when m
diverge. Nevertheless, when the divergence is small,
the disagreement between partitions is small; and
that the divergence tends to increase largely after a
certain point.

x1 x2

0.5 0.5
0.5 1.5
1.5 0.5
1.5 1.5
0.5 4.5
0.5 5.5
1.5 4.5
1.5 5.5
4.5 0.5
5.5 0.5
4.5 1.5
5.5 1.5
4.5 4.5
5.5 4.5
4.5 5.5
5.5 5.5

Table 1: Example of 16 records.

m HCM of1c of4c fcm
1 8 136 264 8
2 8 34 66 8.518
3 8 8.5 16.5 8.5
4 8 2.125 4.125 2.124

Table 2: Example of 16 records. Values of the ob-
jective function for (i) the crisp partitions (column
HCM for Hard c-means), for the case of all cluster
center in the position (3,3) (column of1c), for the
case of four different cluster centers (column of4c)
and for the result of fuzzy c-means (column fcm).

m2 m1 = 1 m2 = 2 m3 = 3 m4 = 4
1 8 9.48 135.5 135.99
2 7.40 8.51 33.99 34
3 3.65 3.87 8.50 8.5
4 1.20 1.22 2.12 2.12

Table 3: Example of 16 records. Results of the ob-
jective function when the set of centroids is com-
puted with m1 = 1, 2, 3, 4 and the objective function
is then computed for m2 = 1, 2, 3, 4.
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3.1. The parameter m and the objective

function

For large values of m, Algorithm 1 leads to solu-
tions in which membership values are similar to 1/c
for most data elements to all clusters. When this
happens, the iterative process also causes that the
centroids tend to be in the center of the data be-
ing clustered. This is so because the centroids (as
can be seen in the equation of Step 3) are just cal-
culated as the mean values of the elements in the
clusters. So, when all elements are in all clusters
with the same membership, they contribute equally
to all clusters.

Due to this effect, we have studied whether for
large m it is preferable to compute the optimal of
the fuzzy c-means with the given m, or if it is prefer-
able to compute an optimal solution with a smaller
m and then use the large m to compute the mem-
bership values and, also, the objective function.

In order to make explicit our computations, we
start describing the computation of the objective
function. Let OF (X, vi, m) denote the computa-
tion of the objective function of fuzzy c-means when
we use a given data set X , the centroids vi and a
given m. That is, it computes the value given by
Equation 1 taking into account that the member-
ship functions are determined using the Equation
in Step 2 of the algorithm.

Then, we will consider two values of m. Let m1

represent a value near to 1, and let m2 represent
a larger value (m2 > m1). Then, we consider on
the one hand the objective function of the problem
FCM(X, m2, c). Formally, let us denote by

< OF, v >= FCM(X, m1, c)

that the algorithm is applied to the data set X with
parameters m1 and c and it returns the vectors of
centroids v as well as the value of the objective func-
tion OF .

On the other hand we consider the solution of the
problem for m1 and then recompute the objective
function using the centroids of m1 but using m2 in
the expression for the objective function. That is,
we compute first

< OF, v1 >= FCM(X, m1, c)

and then use v1 to compute

OF ′ = OF (X, v1, m2).

We then can compare OF and OF ′.
Tables 3 and 4 display the results of applying this

approach to the set of 16 records from Example 1.
For this purpose we used our own implementation
of the algorithm using the programming language
R.

Table 3 shows the objective function for m2 =
1, 2, 3 and 4 when the centroids have been computed
with m1 = 1, 2, 3, 4. It can be seen that the best so-
lution for a given m2 is not the one with m1 = m2

m1 m2 = 4 m2 = 1.7
1.0 1.20469 7.902152
1.1 1.20469 7.902152
1.2 1.20469 7.902152
1.3 1.20469 7.902156
1.4 1.20462 7.902245
1.5 1.20433 7.903276
1.6 1.20366 7.911207
1.7 1.20307 7.949283
1.8 1.20417 8.078378
1.9 1.21035 8.431363
2 1.22762 9.293082
3 2.125 51.53413
4 2.125 51.53436

Table 4: Example of 16 records. Values of the objec-
tive function for m2 = 4 and m2 = 1.7 and different
values of m1.

but with a m1 = 1. This table has been computed
applying fuzzy c-means 10 times and selecting the
best solution (best in terms of the objective func-
tion).

In Table 4, the column m2 = 4 represents the
computation of the objective function for m2 = 4
when we use the centroids obtained, respectively,
with m1 = 1, 1.1, 1.2, . . . . It can be seen that
the centroids that minimize the objective func-
tions are the ones computed with low values of
m1 and not the ones of m1 = 4. The column
m2 = 1.7 represents the objective functions com-
puted for m2 = 1.7 with the centroids obtained with
m1 = 1, 1.1, 1.2, . . . .

We can see that the larger is m, in general, the
worse are the results, being the values between 1
and 2 resulting in a similar objective function, and,
in some cases, decreasing.

In order to compute Table 4, we have applied the
fuzzy c-means algorithm 200 times for each m and
selected the solution with a minimal objective func-
tion.

We have applied the same study to two datasets.
One is the IRIS dataset, which consists of 150
records with 4 numerical variables. The second one
is the QUAKES dataset. It consists of 1000 records
each one described in terms of 5 numerical variables.
We used these data files as provided by R.

Tables 5 and 6 display the values obtained for
the objective function OF and OF ′. It can be seen
that OF ′ leads to the best results in most of the
experiments. The larger the difference between m1

and m2, the better the results obtained by OF ′.

So, the experiments show that for large values of
m, the standard approach for fuzzy c means makes
the optimization problem hard and the results are
not optimal. In these cases it is preferable to use a
lower value of m, apply the algorithm and converge
using this lower value, and, finally, if needed, com-
pute the membership values and/or the objective
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m1 m2 OF ′ OF
1.1 4 0.329 0.681
1.3 4 0.336 0.681
1.5 4 0.341 0.681
1.7 4 0.341 0.681
1.9 4 0.346 0.681
2.0 4 0.324 0.681
2.2 4 0.357 0.681
2.4 4 0.428 0.681
2.6 4 0.515 0.681
2.8 4 0.627 0.681
3.0 4 0.672 0.681
4.0 4 0.681 0.681
1.1 2 14.163 18.911
1.3 2 13.657 18.956
1.5 2 13.886 19.070
1.7 2 14.143 18.470
1.9 2 17.470 18.622

Table 5: Best OF after 10 different executions
of FCM with the IRIS dataset and with c =
5. OF = OF (X, FCM(X, m1), m2) and OF =
FCM(X, m2).

m1 m2 OF ′ OF
1.1 2.5 14.162 18.910
1.3 2.5 13.656 18.956
1.5 2.5 13.886 19.070
1.7 2.5 15.144 18.470
1.9 2.5 17.478 18.623

Table 6: Bests OF after 10 different executions
of FCM with the QUAKES dataset and with c =
10. OF = OF (X, FCM(X, m1), m2) and OF =
FCM(X, m2).

function with the actual large value of m.

3.2. The partitions and the parameter m

We have studied how the partitions obtained by
fuzzy c-means diverge when m increases. To do so
we have compared the outcome of the algorithm for
different values of m applied to the same data set
with the same number of clusters.

The partitions are compared using the cluster
centers. A distance is computed between the two
sets of cluster centers. Let vi and wi represent the
two sets of cluster centers. Then, we first align the
two cluster centers (assigning each one in vi to the
nearest one in wi), and then define their distance as
the maximum distance between pairs. That is, for
aligned centers, we compute

d(v, w) = max
i

d(vi, wi).

We denote by d(v1.1, wm) the distance between
the optimal solution for m1 = 1.1 and the optimal
solution for m2 = m. We compared the results for
m1 = 1.1 and m2 = 1 + t ∗ 0.1 for t = 1, . . . , 20.

In order that the comparison is meaningful, the
centroids vi and wi should be the global minima
(or near enough to the global minima) of the op-
timization problem. Otherwise, the comparison is
not meaningful, and the analysis of the function
d(v1.1, wm) can lead to misleading information. In
particular, if different executions lead to different
local optima, each execution will be comparing ab-
solutely different solutions.

In order to ensure that we are really comparing
the partitions of the global optima, we applied at
least 20 executions of the fuzzy c-means. In some of
the experiments this was not enough and we applied
up to 100 executions.

For the experiments in this section we used three
data files. We used the two described in the previ-
ous section (IRIS and QUAKES). In addition, we
used the THEOP file, which consists of 132 records
described in terms of 5 numerical variables. This
file is also provided by the software package R. For
the computation of these experiments we used the
fuzzy c-means algorithm (cmeans) provided by the
package e1071 in R.

The results show how the cluster centers diverge.
We can see that in most of Figures 1, 2, 3, 4, 5,
and 6 small values have small differences, and that
for larger values the differences increase largely. We
see that in some experiments (Figures 2, 4, 5, and 6)
the difference is not monotonic with respect to the
difference in m. This is usually due to solutions
that are not optimal. In most of the cases, increas-
ing the number of applications of fuzzy c-means the
monotonicity of the curve improves.

Note that we have better curves with low c than
with large c, where it is more difficult to find the
global optima.
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Figure 1: Distance between the centroids obtained
with m = 1.1 and the ones of m = 1 + 0.1t for
t = 1, . . . , 20. Case of the Iris file with c = 3, and
20 executions for each m.
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Figure 2: Distance between the centroids obtained
with m = 1.1 and the ones of m = 1 + 0.1t for
t = 1, . . . , 20. Case of the Iris file with c = 20, and
1000 executions for each m.
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Figure 3: Distance between the centroids obtained
with m = 1.1 and the ones of m = 1 + 0.1t for
t = 1, . . . , 20. Case of the THEOP file with c = 4,
and 100 executions for each m.

4. Summary and future work

In this work we have studied the effect of the pa-
rameter m in the results obtained by fuzzy c-means.

We have seen that for large values of m the par-
titions tend to be blurred and the centroids concen-
trated in the center of the data. Let m be the large
parameter. In this case, in order to have a better
result of the objective function it is preferable to
apply the algorithm with a value of m′ such that
is smaller m′ < m and then use the original m to
compute the objective function (and the member-
ship degrees). This seems to lead to better results
than applying the algorithm with m.

We have also shown that given two values m1 and
m2, when their difference is small, the clusters ob-
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Figure 4: Distance between the centroids obtained
with m = 1.1 and the ones of m = 1 + 0.1t for
t = 1, . . . , 20. Case of the THEOP file with c = 15,
and 100 executions for each m.
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Figure 5: Distance between the centroids obtained
with m = 1.1 and the ones of m = 1 + 0.1t for
t = 1, . . . , 20. Case of the Quakes file with c = 4,
and 100 executions for each m.

tained by the fuzzy c-means algorithm are similar.
Then, after a point (in some cases |m1 − m2| > 0.5)
the clusters centers start to be rather different. This
can be taken into account when applying fuzzy c-
means.

We consider two lines for future work. One is the
extension of the study described here to other types
of fuzzy clustering algorithms as e.g. entropy based
fuzzy c-means. The other is to study the relation-
ship between clustering results, the parameter m,
and the fuzzy cluster validity indices.
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Figure 6: Distance between the centroids obtained
with m = 1.1 and the ones of m = 1 + 0.1t for
t = 1, . . . , 20. Case of the Quakes file with c = 20,
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