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Abstract

In this paper we introduce a new notion of gene-
ralized metric, called i-metric. This generalization
is made by changing the valuation space of the dis-
tance function. The result is an interesting distance
function for the set of fuzzy numbers of Interval
Type with non negative fuzzy numbers as values.
This example of i-metric generates a topology in a
very natural way, based on open balls. We prove
that this topology is Hausdorff, regular but not me-
trizable(generated by an usual metric).

Keywords: i-Metric, Fuzzy Metric, Topology,
Metrizability.

1. Introduction

There are several notions of fuzzy metrics, as seen
in [1], [2], [3]. In the references [2] and [4] the au-
thors proved that the resulting topology is metri-
zable. In this paper, we introduce a notion of ge-
neralized metric and provide an example on fuzzy
numbers (interval type) whose the generated topol-
ogy is Hausdorff, regular, but not metrizable. This
example is interesting in the field of topology, since
the construction of this topology is very similar to
the construction of the usual metric case and the
generalized metric has relation with the important
concept of interval representation, as explained be-
low.
This paper is structured in the following way:

Section 1 presents some required order theory con-
cepts and the notion of i-metric and i-metric valua-
tion; Section 3 presents the topology of an i-metric
space; Section 4 presents a brief introduction on
fuzzy numbers; Section 5 presents the example of
fuzzy metric; Section 6 presents the properties of
the topology resulting from the i-metric presented
in section 5 and section 7 presents the final remarks.

2. i-Metric Valuation and i-Metric

In this first section, we construct the codomain of
the new distance. The basic prerequisites for this
section are order theory and domain theory(see [6]
and [7]). Some of the notion presented here are new:
semi-auxiliary relation, separable smallest element
and IDV (short for i-distance valuation).

Definition 2.1 Let ≤ be a partial order on A (in
this case 〈A,≤〉 is called a poset). A binary relation
R on A is a semi-auxiliary relation to ≤ when:

1. aRb⇒ a ≤ b;
2. If a ≤ b, bRc and c ≤ d, then aRd.

This definition is very similar to the definition of
auxiliary relation (see [7]). The reason to provide
this weaker concept is that the strict relation < is
not an auxiliary relation to ≤ on posets with small-
est element ⊥, since ⊥ 6< ⊥.

Proposition 2.1 If 〈A,≤〉 is a poset, then the
strict relation a < b ⇔ (a ≤ b) ∧ (a 6= b) is a
semi-auxiliary relation to ≤.

Proof: The first condition is immediate. To prove
the second, suppose that a ≤ b, b < c and c ≤ d.
Since b < c, we have b ≤ c and, by the transitivity
of ≤, we have a ≤ d. It only remains to verify that
a 6= d. Suppose that a = d. Thus b = c, which
contradicts the hypothesis b < c. Thus, we must
have a 6= d so a < d.

Proposition 2.2 If 〈A,≤〉 is a poset, then every
semi-auxiliary relation to ≤ is transitive.

Proof: Let R be a semi-auxiliary relation to ≤ and
suppose that aRb and bRc. Thus, we have a ≤ b,
bRc and c ≤ c, so, from the second condition, it
follows that aRc.

Definition 2.2 A poset with smallest element and
a semi-auxiliary relation R, 〈A,≤, R,⊥〉 is said to
have separable smallest element, when A is d-
directed(every subset of A with two elements has
lower bound) and for every pair of elements a, b ∈
A, with ⊥Ra and ⊥Rb, there is a lower bound c for
{a, b} such that ⊥Rc.

Example 2.1 Not every poset in the conditions of
above definition 〈A,≤,⊥A〉 has separable smallest
element. Consider N∗ = {1, 2, ...}, the partial order
a ≤d b⇔ a|b and its strict relation <. The smallest
element of 〈N∗,≤d〉 is 1 and for a, b ∈ N∗, is easy
to see that gcd(a, b)(greatest commom divisor) is a
lower bound for {a, b}. Note that gcd(2, 3) = 1, so
the unique lower bound of {2, 3} is 1. Thus, this
poset has no separable smallest element.
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On the other hand, if the order ≤ is total, then
〈A,≤, <,⊥〉 has separable smallest element.

Definition 2.3 An i-Distance Valuation (IDV)
is a structure 〈A,≤, R,⊥〉, where R is a semi-
auxiliary relation to ≤ and 〈A,≤, R,⊥〉 is a d-
directed poset with separable smallest element.

Example 2.2 If 〈A,≤,⊥〉 is a totally ordered set,
then the structure 〈A,≤, <,⊥〉 is a IDV. A very na-
tural IDV is 〈[0,+∞),≤, <, 0〉, where ≤ is the usual
order of real numbers. This structure is practically
the valuation structure for usual metrics (lacking
only on the addition operation).

Definition 2.4 Let M be a nonempty set and V =
〈A,≤, R,⊥〉 an IDV. A function d : M ×M −→ A
is called i-metric V-valued (or with respect to V)
whenever:

1. d(a, b) = ⊥ if, and only if, a = b;
2. d(a, b) = d(b, a), for all a, b ∈M ;
3. If d(a, b)Rε, for some ε ∈ A with ⊥Rε, then

exists δ ∈ A, with ⊥Rδ, such that d(b, c)Rδ ⇒
d(a, c)Rε.

In this case, the triplet (M,d,V) is called i-metric
space.

The first two conditions of i-metric are easily re-
cognizable as generalizations of the usual conditions
of metrics. The third one, which is the “triangle
inequality” seems strange, but in section 3, about
topology, it will be justified.

In [8], where another distance generalization is
introduced, the author stated that the minimum
structure necessary to generalize the valuation space
of distance has to be able to encompasses the trian-
gle inequality, i.e., an order and a binary operation
(the sum) are necessary. Nevertheless, our IDV does
not have a binary operation. In section 5 of the met-
ric on fuzzy numbers of the interval type, we explain
the reason for this.

The next theorem shows that the usual metrics
are i-metrics.

Theorem 2.1 Let d be an usual metric on M .
The function di : M × M −→ [0,+∞), defined
by di(a, b) = d(a, b) is an i-metric V-valued, where
V = 〈[0,+∞),≤, <, 0〉.

Proof: Let 〈M,d〉 be an usual metric space. The
structure V = 〈R+,≤, <, {0}〉 is trivially an IDV.
Its immediate that the function di satisfies the con-
ditions 1. and 2. of i-metric. For the third condi-
tion, suppose that di(a, b) < ε, with ε > 0. Take
δ = ε − d(a, b) > 0, so di(b, c) < δ ⇒ d(b, c) <
ε−d(a, b)⇒ d(a, b) +d(b, c) < ε, so, from the usual
triangle inequality, it follows that d(a, c) < ε, ie,
di(a, c) < ε.

3. i-Metrics and Topology

In this section, we show how the i-metrics, as in the
usual case, generate a topology from the concept of
open ball.

Definition 3.1 Let (M,d, 〈A,≤, R,⊥〉) be an i-
metric space. Given a ∈ M and ε ∈ A with ⊥Rε,
the open ball with center a and radius ε is the
set B(a, ε) = {b ∈ M ; d(a, b)Rε}. A set O ⊆ M is
called open, whenever for every a ∈ O there is an
open ball B(a, ε), such that B(a, ε) ⊆ O.

Theorem 3.1 Let (M,d, 〈A,≤, R,⊥〉) be an i-
metric space. The class =(M) of the open sets of
M is a topology on M .

Proof: It’s enough to prove that ∅, A ∈ =(M),
if {Aλ}λ∈L ⊆ =(M), then

⋃
λ∈L

Aλ ∈ =(M) and

if A,B ∈ =(M), then A ∩ B ∈ =(M). The first
two conditions are immediate. Take A,B ∈ =(M)
and a ∈ A ∩ B. Since A and B are open sets,
there are open balls B(a, ε1) and B(a, ε2) such that
B(a, ε1) ⊆ A and B(a, ε2) ⊆ B. We have ⊥Rε1
and ⊥Rε2, so, as A is a d-directed set with se-
parable smallest element, there is a lower bound
δ ∈ A for {ε1, ε2} with ⊥Rδ. Thus, consider the
open ball B(a, δ). Take b ∈ B(a, δ), i.e., d(a, b)Rδ.
Since δ is a lower bound for {ε1, ε2}, we have
δ ≤ ε1 ⇒ d(a, b)Rε1 ⇒ b ∈ B(a, ε1), which im-
plies that B(a, δ) ⊆ B(a, ε1). Similarly, we prove
that B(a, δ) ⊆ B(a, ε2). Thus, B(a, δ) ⊆ A ∩ B, so
A ∩B ∈ =(M).

In the previous proof, the necessity of the valua-
tion space be a d-directed set with separable small-
est element and R be a semi-auxiliary relation be-
comes clear.

Theorem 3.2 Let (M,d, 〈A,≤, R,⊥〉) be an i-
metric space. Every open ball is an open set.

Proof: Take ε ∈ A, with ⊥Rε, a ∈ M and
b ∈ B(a, ε). Thus, d(a, b)Rε. From the third
condition of i-metrics, there is δ ∈ A, with ⊥Rδ,
such that d(b, c)Rδ ⇒ d(a, c)Rε. Consider the
open ball B(b, δ). If c ∈ B(b, δ), then d(b, c)Rδ ⇒
d(a, c)Rε ⇔ c ∈ B(a, ε) ⇒ B(b, δ) ⊆ B(a, ε), mea-
ning that B(a, ε) is an open set.

In the previous proof, the triangle inequality of
i-metric was justified. It follows directly from the
above theorem that the class of open ball is a basis
to the i-metric topology.
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4. Fuzzy Numbers

In this section we make a brief explanation on fuzzy
numbers. For more details see [9].
A fuzzy number is a fuzzy set A : R −→ [0, 1]

that satisfies:

1. A is normal (there is t ∈ R such that A(t) = 1);
2. The support of A — i.e. the set suppA = {t ∈

R; A(t) > 0} — is a bounded subset of R;
3. For every α ∈ (0, 1], the α-cut Aα = {t ∈

R; A(t) ≥ α} is a compact interval of R.

Every real number r can be seen as a fuzzy num-
ber, with membership function:

µr(t) =
{

1, if t = r
0, if t 6= r

.

The main type of fuzzy numbers to be used in this
paper are the intervals, i.e., considering a compact
interval [a, b], we can see it as a fuzzy number with
membership function:

µ[a,b](t) =
{

1, if t ∈ [a, b]
0, if t /∈ [a, b] .

We will denote the set of this fuzzy numbers by If .
If X ∈ If , we use the notation X = [x, x]. The
set of all elements X ∈ If such that x ≥ 0 will be
denoted by I+

f .
Since these fuzzy numbers are identifield with

the intervals, we can use the concepts relatives to
the interval mathematics([10]). For example, the
Kulisch-Miranker order ≤km(see [11]), defined by
X ≤km Y ⇔ x ≤ y and x ≤ y, for X,Y ∈ If .

5. i-Metric on Fuzzy Numbers(Intervals)

An IDV V whose the set is a class of fuzzy sets
will be called fuzzy IDV and an i-metric V-valued
will be called fuzzy i-metric. Next, we construct
a fuzzy IDV for our example of fuzzy i-metric on
intervals.

Proposition 5.1 The binary relation�∗ in I+
f de-

fined by:

1. [0, a]�∗ [0, b]⇔ a < b;
2. [a, b] �∗ [c, d] ⇔ a < c and b < d, where

a, b, c, d > 0.

is a semi-auxiliary relation to ≤km.

Proof: Straightforward.

Observation 5.1 Note that if [a, b] ∈ I+
f and

[a, b] 6= [0, 0], then [0, 0]�∗ [a, b].

Theorem 5.1 The structure 〈I+
f ,≤km,�∗, [0, 0]〉

is a fuzzy IDV.

Proof: We trivially see that this structure is a
d-directed set with smallest element. To prove
that the smallest element is separable, suppose that
X,Y ∈ I+

f − {[0, 0]}. Thus, x > 0 and y > 0, so
c = min{x, y} > 0, implying that [0, 0] �∗ [0, c] ∈
L{X,Y }.

This IDV ωKM = 〈I+
f ,≤km,�∗, [0, 0]〉 will be

called IDV of Kulisch-Miranker.
Next, we present the concept of interval represen-

tation. For more details, see [12] and and [13].

Definition 5.1 A function F : Inf −→ If is said
to be an interval representation of a function
f : Rn −→ R whenever f([a1, b1]× · · · × [an, bn]) ⊆
F ([a1, b1], . . . , [an, bn]) (here, we consider the fuzzy
numbers in If as simple intervals, i.e, sets of real
numbers and the relation ⊆ is the usual inclusion
relation on sets) for all [ai, bi] ∈ If ; in other
words, if x ∈ [a1, b1] × · · · × [an, bn], then f(x) ∈
F ([a1, b1], . . . , [an, bn]). In this case we say that F
represents f .

Example 5.1 Consider the function f : R −→ R
defined by f(x) = x+1. The functions F,G : If −→
If defined by F ([a, b]) = [a, b + 1] and G([a, b]) =
[a+ 1, b+ 1] represent f .

Example 5.2 Consider the function F : If −→ If
defined by F ([a, b]) = [a− 1, b+ 1]. We have that F
represents the real functions f(x) = x− 1, g(x) = x
and h(x) = x+ 1.

In the example 5.1, we see that a real function can
be represented by more than one interval function.
Note that the functions F and G in this example
satisfy G([a, b]) ⊂ F ([a, b]), for all [a, b] ∈ IR. One
can say that the function G is closer to f than F ,
which motivates the definition.

Definition 5.2 [12] Let F,G : Inf −→ If be two
interval functions that represent the real function f :
R −→ R. Thus, F is said to be a better interval
representantion of f than G, which is denoted
by G v F , whenever F ([a1, b1] × ... × [an, bn]) ⊆
G([a1, b1]× ...× [an, bn]), for all [ai, bi] ∈ IR.

Definition 5.3 Let f : R −→ R be a real function
without vertical asymptotes ( lim

x−→a+
−

f(x) 6= ±∞, for

all a ∈ R). The interval function f̂ : If −→ If
defined by f̂([a, b]) = [inf f([a, b]), sup f([a, b])] is
called canonical interval representation (CIR
for short) of f .

The condition of f does not have vertical asymp-
totes ensures that the function f̂ is well defined.

Proposition 5.2 Let f : R −→ R be a real func-
tion without vertical asymptotes. If F : If −→ If
represents f , then F v f̂ , i.e., the function f̂ is the
best interval representation of f .
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Proof: See [12].

The next proposition shows that the notion of
fuzzy i-metric introduced here does not capture the
idea of interval representation to usual Euclidean
metric on R.

Theorem 5.2 There is no fuzzy i-metric di : If ×
If −→ I+

f V-valued, where V = 〈IR+,≤, R, [0, 0]〉,
that represents the usual Euclidean distance on R.

Proof: As di([a, b], [a, b]) = [0, 0], if a < b, then
exists x, y ∈ [a, b] such that d(x, y) = |x − y| > 0.
Thus, x, y ∈ [a, b], but d(x, y) /∈ di([a, b], [a, b]) =
[0, 0].

The canonical interval representation of a real
function is the best interval representation of this
function. For this reason, we consider that a ge-
neralized notion of distance captures the idea
of interval representation whenever this notion in-
cludes the function D([a, b], [c, d]) = d̂([a, b], [c, d]),
if [a, b] 6= [c, d] and D([a, b], [c, d]) = [0, 0], if [a, b] =
[c, d] (here, d is the usual Euclidean distance on R).
This function differs from d̂ only on the value of
D(X,X), where X is a non-degenerate interval.

Theorem 5.3 Given X,Y ∈ If , consider the
set DXY = {d(x, y);x ∈ X e y ∈ Y } =
[minDXY ,maxDXY ] ∈ I+

f . This element of If
represents all the possible values of the (usual Eu-
clidean) distances betweeen elements of the intervals
[x, x] and [y, y]. The function dKM : If ×If −→ I+

f

defined by:

dKM (X,Y ) =
{

[0, 0] , if X = Y
DXY , if X 6= Y

(1)

is a fuzzy i-metric ωKM -valued.

Proof: If X = Y , then dKM (X,Y ) = [0, 0]. Sup-
pose that X 6= Y . Thus, there are x ∈ X and
y ∈ Y with x 6= y, so d(x, y) > 0 and, consequently,
maxDXY > 0, meaning that dKM (X,Y ) 6= [0, 0].
So, The first condition is hold.
Since d is an usual metric, the second condition

is immediate.
Finally, suppose that dKM (X,Y ) �∗ Σ = [ε, ε],

with [0, 0]�∗ Σ. If X = Y , the result holds trivia-
lly. Thus, suppose that X 6= Y , so maxDXY < ε.
First, consider y < y. In this case, take ∆ =

[0,
y − y

2 ]. Note that [0, 0] �∗ ∆. If z ∈ R, then

d(z, y) ≥
y − y

2 or d(z, y) ≥
y − y

2 , so for every

interval Z, we have maxDY Z ≥
y − y

2 . Thus, if
Z 6= Y , then dKM (Y,Z) 6�∗ ∆. So, dKM (Y, Z)�∗
∆⇒ Y = Z ⇒ dKM (X,Z) = dKM (X,Y )�∗ Σ.

Consider the case Y = [y, y]. Define ∆ =
[0, ε − supDXY ] and suppose that dKM (Y,Z) �∗
∆. If Y = Z, then the result holds trivia-
lly. If Y 6= Z, then minDY Z = 0 ⇒ y ∈
Z ⇒ minDXZ ≤ minDXY and maxDY Z <
ε − maxDXY ⇒ maxDXY + maxDY Z < ε. De-
fine D = {d(x, y) + d(y, z); x ∈ X, y ∈ Y, z ∈
Z}. Note that D ⊆ DXY + DY Z ⇒ maxD ≤
max(DXY + DY Z) = maxDXY + maxDY Z < ε.
From the usual triangle inequality, it follows that
maxDXZ ≤ maxD < ε. So, dKM (X,Z)�∗ Σ.

The function dKM will be called KM -metric.
Considering the usual sum of intervals (see [10])

and the Kulisch-Miranker order, this function dKM
does not satisfies the usual triangle inequality. In
fact, take X = [0, 1], Y = [1, 2] and Z = [2, 3].
Thus, dKM (X,Y ) = [0, 2], dKM (X,Z) = [1, 3]
and dKM (Y, Z) = [0, 2], so dKM (X,Z) 6≤KM
dKM (X,Y )+dKM (Y, Z). This fact justifies the tri-
angle inequality of i-metric, since the function dKM
is a very natural generalization of the Euclidean dis-
tance on R.
The next theorem presents the characterization

of the i-metric dKM .

Theorem 5.4 Given X,Y ∈ If , we have:

dkm(X,Y ) =



[0, 0] , if X = Y
[d(x, y), d(x, y)] , if x < y
[d(x, y), d(x, y)] , if y < x

[0, d(x, y)] , if X <km Y
and X ∩ Y 6= ∅

[0, d(x, y)] , if Y <km X
and X ∩ Y 6= ∅

[0, (d(x, y)) ∨ (d(x, y))] , if X 6= Y and
(X ⊂ Y or Y ⊂ X)

Proof: Immediate.

6. The topology Generated by dKM

In this section, we present some properties of the
topology generated by dKM , which will be denoted
by =KM . For example, this topology is Hausdorff
and regular. In the end, we prove that this topology
is not metrizable. We start with the lemma below.

Lemma 6.1 If X = [x, x] with x < x, then {X} is
an open set of =KM .

Proof: Consider X ∈ If , with x < x. Take ∆ =
[0, x− x2 ]. Note that [0, 0]�∗ ∆ and if x 6= y, then

supDXY ≥
x− x

2 ⇒ dKM (X,Y ) 6�∗ ∆. Thus,
dKM (X,Y ) �∗ ∆ ⇒ X = Y , that is, the open
ball(which is an open set of =KM ), B(X,∆) is equal
to {X}.
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This lemma shows that the topology =KM is
“almost trivial”, since every singleton {X}, where
X = [x, x] with x < x, is an open set. However, this
topology is not trivial. The singleton {[a, a]} is not
an open set for all a ∈ R. In fact, given [0, 0] �∗
[ε, ε], we have ε > 0. Thus, take X = [a, a + ε

2 ].
Note that dKM ([a, a], X) = [0, ε2 ]) �∗ [ε, ε], so,
X ∈ B([a, a], [ε, ε]). It follows that every open ball
with center [a, a] has some other element from IR
than [a, a]. Another interesting fact about =KM
is that for every [a, a] ∈ If , there is an open ball
B1 = B([a, a],∆) such that the unique degenerated
element(that is, [x, x] ∈ If) in B1 is [a, a]. In fact,
just take ∆ = [0, ε], with ε > 0.

Proposition 6.1 The topology =KM is Hausdorff.

Proof: Take X,Y ∈ If . We must prove that there
is two disjoint open sets A and B such that X ∈
A and Y ∈ B. If X and Y are non-degenerated
elements of If , then take A = {X} and B = {Y }.
Now, consider the case X = [x, x] and Y = [y, y],

with y < y. Take 0 < r < sup
y∈Y
|x − y| and con-

sider the open ball B = B([x, x], [0, r]). Note that
dKM ([x, x], [y, y]) = [ inf

y∈Y
|x− y|, sup

y∈Y
|x− y|], so, as

sup
y∈Y
|x − y| > r, it follows that [y, y] /∈ B. Thus, B

and {[y, y]} are the two disjoint open sets we were
looking for.
Finally, consider the case X = [x, x] and Y =

[y, y]. Take r = |x − y| > 0 and the open balls
B1 = B([x, x], [0, r2 ] and B2 = B([y, y], [0, r2 ]. The
unique degenerate interval in B1 is [x, x] and in B2
is [y, y]. Take A = [a, a], with a < a and suppose
that A ∈ B1 ∩ B2. Thus, sup

a∈A
|x − a| < r

2 and

sup
a∈A
|y − a| < r

2 . Consider a1, a2 ∈ A such that

|x − a1| = sup
a∈A
|x − a| and |y − a2| = sup

a∈A
|y − a|.

So, |x− a1| < r
2 and |y − a2| < r

2 , which implies(by
the usual triangle inequality) that |x − y| ≤ |x −
a1|+ |y− a1| ≤ |x− a1|+ |y− a2| < r

2 + r
2 = r, i.e.,

|x−y| < r, which is a contradiction, so, B1∩B2 = ∅.

Because of the above theorem we can ask our-
selves if the topology =KM is metrizable, i.e., can it
be generated by an usual metric, since every metri-
zable topology is Hausdorff. To investigate this we
can see if =KM has other properties of the metri-
zable topologies. It is a well-known fact that every
metrizable topology is regular, that is, the topology
is Hausdorff and for every point x and closed set
F such that x /∈ F we can find disjoint open sets
A and B such that x ∈ A and F ⊆ B. To prove
that this topology is regular we will use the lemma
below, whose proof can be found in [5].

Lemma 6.2 A topological space (M, τ) (or the
topology τ) is regular if, and only if, for every a ∈M
and for every neighborhood O of a, there is a neigh-
borhood V of a such that a ∈ V ⊆ V ⊆ O (V repre-
sents the closure of V ).

Lemma 6.3 The open balls B([a, a], [0, r]), with
r > 0 are closed sets with respect to =KM .

Proof: In fact, we must prove that the complemen-
tary set of B = B([a, a], [0, r]) is an open set of
=KM . If [x, x] /∈ B, with x < x, then {[x, x]} is
a neighborhood of [x, x] in the complement of B.
For [x, x] /∈ B, we have |x − a| = r1 > 0. Thus,
take the open ball B1 = B([x, x], [0, r1]). We must
prove that this open ball is a subset of the comple-
ment of B. Note that the only degenerate inter-
val in B1 is [x, x], which is not in B. Now, con-
sider X = [x, x] ∈ B1, with x < x. We must
have x ≤ x ≤ x and supDX[x,x] < r1. Since
supDX[x,x] = max{x − x, x − x}, it follows that
x−x < r1 and x−x < r1. Thus, given z ∈ [x, x], we
have |z − x| < r1, so a /∈ [x, x] and then [x, x] /∈ B.

Theorem 6.1 The topology =KM is regular.

Proof: If X = [x, x], with x < x, then V = {X} is
an open and closed set, then X ∈ V ⊆ V ⊂ U for all
open set U such that X ∈ U . If X = [x, x] and U is
an open set such that X ∈ U , then there is an open
ball B = B(X, [0, r]) such that B ⊆ U . Since B is
a closed set, we have B = B, so X ⊆ B ⊆ B ⊆ U .
Thus, it follows from the lemma above that =KM is
regular.

Thus, the topology =KM is regular, that is, it
has other property of metrizable topologies. To in-
vestigate if =KM is a metrizable topology, we use
the below theorem, which gives a characterization of
metrizable topologies, whose the proof can be found
in [5].

Theorem 6.2 (Nagata-Smirnov theorem) A
topology τ is metrizable if, and only if, is regu-
lar(and then Hausdorff) and has a basis that can
be decomposed into an at most countable collection
of locally finite families.

A familly A of subsets from a topological space
(M, τ) is locally finite if for every x ∈ M there is a
neighborhood of x that intersects only finitely many
sets of the family.

Since the topology =KM is regular, to prove that
it is non metrizable we must prove that it has no
basis as in the Nagata-Smirnov theorem.

Theorem 6.3 The topology =KM is not metriza-
ble.
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Proof: Suppose that =KM is metrizable. From the
Nagata-Smirnov theorem, it follows that =KM has
a basis B that can be decomposed into an at most
countable collection of locally finite families. Since
every singleton set {[x, x]}, with x < x, is an open
set of =KM , so every basis of =KM must contain all
of this kind of singleton. Denote by N the class of
this singletons. Thus, we have N ⊆ B. As B can
be decomposed into an at most countable collection
of locally finite families, so can N . In fact, if B =⋃
n∈NBn is that decomposition for B, then N =⋃
n∈N(N ∩ Bn) is the decomposition for N . We

will use the notation Ln = N ∩ Bn. Take x ∈ R
and consider the degenerate interval [x, x] of IR.
By the initial hypotheses, there is an open set V ∈
=KM such that [x, x] ∈ V and V intersects a finite
quantity of sets in Ln, for every n ∈ N. Since V is
an open set, there is an open ball Bx with center
[x, x] such that Bx ⊆ V . Suppose, without loss of
generality, that Bx = B([x, x], [0, r]), with r > 0.
Thus, for every n ∈ N, Bx intersects only finetely
many sets in Ln, that is, there is a finite quantity
of intervals [x, x], with x < x, belonging to Bx such
that {[x, x]} ∈ Ln. Consider the intervals Xs =
[x, x + s], with 0 < s < r. Note that Xs ∈ Bx, for
all s ∈ (0, r), because dkm([x, x], Xs) = [0, s] �∗
[0, r]. Define Nx = {Xs; 0 < s < r}. We have
Nx ⊆ N =

⋃
n∈N Ln, so Nx =

⋃
n∈N(Nx ∩ Ln).

Since for every n ∈ N, Nx ∩Ln is a finite set, so Nx
is a union of a countable quantity of finite sets, so
Nx is a countable set, which is an absurd because
Nx has the same cardinality of (0, r). Thus, =KM
is a non-metrizable topology.

7. Final Remarks

In this paper we presented a new concept of ge-
neralized metric based on the modification of the
codomain of the distance function and show how
this notion generates a topology quite naturally
(like the topology generated by an usual metric).
From this notion, we presented an example of i-
metric with fuzzy valuation. In [4] the authors
showed that the topology generated by the fuzzy
metric proposed by George and Veeramani was me-
trizable. The authors of [4] commented that this
was a good result, because with it the topology
would have several properties that are typical of
metrizable topologies. In fact, this may be inter-
esting, however, from the topological point of view
this makes the notion of fuzzy metric by George and
Veeramani unnecessary, since the topology can be
generated by an usual metric. In this paper, we
show that our example of fuzzy i-metric generates a
Hausdorff and regular topology, which is metrizable.
This justifies our proposal of generalized metric.
In future works, we intend to find new examples

of i-metric whose codomain classes formed by other
types of fuzzy sets, such as the triangular fuzzy

numbers, or trapezoidal. Also, since the fuzzy num-
bers are defined by its α-cuts, which are intervals,
we can use the KM -metric to define a fuzzy num-
ber from the distance between the α-cuts of two
fuzzy numbers, which provides a fuzzy number as
the distance between fuzzy numbers. In addition,
we can study i-metrics with other valuations, as sets
of strings or functions.
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