
A scalable coevolutionary multi-objective particle swarm optimizer

Xiangwei Zheng1,2)*, Hong Liu1,2)
1) School of Information Science and Engineering, Shandong Normal University, Jinan 250014, P.R. China

2) Shandong Provincial Key Laboratory for Distributed Computer Software Novel Technology, Jinan 250014, P.R. China
E-mail: xwzhengcn@gmail.com, hongliu@sdnu.edu.cn

*Corresponding author

Abstract

Multi-Objective Particle Swarm Optimizers (MOPSOs) are easily trapped in local optima, cost more function evaluations
and suffer from the curse of dimensionality. A scalable cooperative coevolution and -dominance based MOPSO
(CEPSO) is proposed to address these issues. In CEPSO, Multi-objective Optimization Problems (MOPs) are
decomposed in terms of their decision variables and are optimized by cooperative coevolutionary subswarms, and a
uniform distribution mutation operator is adopted to avoid premature convergence. All subswarms share an external
archive based on -dominance, which is also used as a leader set. Collaborators are selected from the archive and used to
construct context vectors in order to evaluate particles in a subswarm. CEPSO is tested on several classical MOP
benchmark functions and experimental results show that CEPSO can readily escape from local optima and optimize both
low and high dimensional problems, but the number of function evaluations only increases linearly with respect to the
number of decision variables. Therefore, CEPSO is competitive in solving various MOPs.

Keywords: Multi-objective optimization; Scalable; Cooperative coevolution; -dominance; MOPSO(multi-objective
particle swarm optimizer)

1. Introduction

Multi-objective Optimization Problems (MOPs) are a class
of problems frequently encountered in various fields of
science and technologies. Such problems can be very
complex when certain pragmatic functions and specific
model constraints come into place. Traditional methods,
such as mathematical programming, are robust and have
been proved their effectiveness in handling a variety of
common MOPs. However, such techniques have been found
to encounter difficulties such as easily getting trapped in
local optima, intolerable computational complexity, and
inapplicable to certain kinds of objective functions.1 To
overcome these shortcomings, heuristic optimization
techniques have been developed, among which Multi-
Objective Particle Swarm Optimizers (MOPSOs) are
especially promising.2-3

Researches on MOPSO is grounded on the successful
application of Particle Swarm Optimizer (PSO)4, a
population based stochastic optimization technique
developed by Kennedy and Eberhart in 19955, and the fact
that several improved PSOs are proven to produce very
good results at a very low computational cost. Moore and
Chapman proposed the first extension of PSO strategy for
solving multi-objective problems in an unpublished
manuscript in 19996, which is recognized as the origin of

MOPSOs. Since this earliest attempt, special interest in
extending PSO have bursted among researchers, and over
30 different proposals of MOPSOs have been reported in
literature thus far. However, all these MOPSOs are more or
less suffered from severe drawbacks including being easily
trapped in local optima, unbearable number of function
evaluations and the curse of dimensionality.

Recently coevolution has been studied by many
researchers and shown success to complex and unstructured
problems7, and -dominance based archive strategy has also
demonstrated satisfactory convergence and distribution
properties8, which inspires our research.

In this paper, a scalable Cooperative Coevolution and -
dominance based multi-objective Particle Swarm Optimizer
(CEPSO) is proposed to counter the above mentioned
MOPSO disadvantages. In CEPSO, the MOPs are
decomposed with respect to their decision variables and are
optimized by cooperative coevolutionary subswarms. A
uniform distribution mutation operator is adopted to avoid
premature convergence. All subswarms share an external
archive based on -dominance, which is also served as a
leader set. Collaborators are selected from the archive and
used to construct context vectors in order to evaluate
particles in a subswarm. CEPSO is tested on several
classical MOP benchmark functions and experimental

International Journal of Computational Intelligence Systems, Vol.3, No. 5 (October, 2010), 590-600

Published by Atlantis Press
 Copyright: the authors
 590

mailto:xwzhengcn@gmail.com
zegerkarssen
Texte tapé à la machine
Received: 16-07-2009
Accepted: 15-10-2010

results show that CEPSO can readily escape from local
optima and optimize both low and high dimensional
problems while the number of function evaluations just
increases linearly with respect to the number of decision
variables.

The remainder of this paper is organized as follows:
Section 2 describes basic concepts of MOPs; Section 3
reviews MOPSOs and related work on coevolutionary
evolutionary algorithms; Section 4 details the proposed
CEPSO, including problem decomposition, selection of
collaborators, flow chart and the algorithm in pseudo code;
In Section 5, experimental results on several benchmark
functions are presented and discussed; And finally Section 6
concludes the paper and points out possible future work.

2. Basic concepts

In MOPs, commonly a set of non-dominated solutions are
generated instead of a single recommended solution.
According to the concept of non-dominance, also referred to
as Pareto optimal, a solution to a multiobjective problem is
nondominated, if no objective can be improved without
worsening at least one other objective. Without loss of
generality, we define the MOPs in eq. (1).

Min f(x) = [f1(x), f2(x), …, fk(x)] (1)
Where x is the decision vector and fi is the ith objective

function, where i=1,…,k. To describe the concept of Pareto
optimal in MOPs, several definitions must be given first.

Definition 1 (Pareto dominance). A decision vector x0
dominates x1, denoted as , iff)(1xx 0

fi(x0) fi(x1), i = 1 ,2 , …, k
fi(x0)<fi(x1), i { 1 ,2 , …, k} ∈
Definition 2 (Pareto optimal or Pareto

nondominance). A decision vector x0 is Pareto optimal iff

011

Definition 3 (Pareto optimal set). Pareto optimal set is
a set containing all the Pareto optimal vectors.

xxx ：

}|{ 010 xxxPs 
Definition 4 (Pareto Front). It is defined as

PF={f(x)=(f1(x), f2(x), …, fk(x)) | x∈Ps}

3. Related work

3.1. MOPSO

PSO is a relatively new population-based stochastic
optimization technique developed by Kennedy and Eberhart
in 1995. 5 PSO emulates swarm behavior of insects, animals
herding, birds flocking, and fish schooling, in which
collaborative search for food exhibits a potential
computational model. Each member in the swarm adapts its
search patterns by learning its own experiences and other
members’. These phenomena have been studied
scientifically and a relevant computing model, the so-called
Partical Swarm Optimization or PSO has been constructed,
which can be described informally as follows.

A member in the swarm, called a particle, represents a
potential solution which is a point in the search space. The
global optimum is regarded as the location of food. Each
particle uses both an adaptable fitness value and an
adaptable velocity to adjust its flying direction according to
the best experiences of the swarm to search for the global
optimum in a n-dimensional solution space.

The trajectory of each individual in the search space is
adjusted by dynamically altering its velocity according to its
own flying experiences as well as the others’. The position
vector and the velocity vector of the ith particle in the n-
dimensional search space can be represented as xi=(xi1,
xi2, …, xin) and vi=(vi1, vi2, …, vin) respectively. Given a user
defined fitness function, denote the best position obtained
by the best fitness value of a particle at time t as pi=(pi1,
pi2, …, pin), which is named as pbest, further denote the
fittest particle found so far at time t as pg=(pg1, pg2, …, pgn),
which is named as gbest, then, the new velocity and position
of particle i at time t+1 can be calculated using eq. (2).








))(())(()()1(

)1()()1(

2211 txprctxprctvtv

tvtxtx

igiiii

iii (2)

Where c1 and c2 are constants known as acceleration
coefficients, and r1 and r2 are two separately generated
uniformly distributed random numbers in range [0,1].

Successful applications of PSO encouraged its
introduction to the field of MOPs. Up till now, there have
been dozens of representative MOPSOs reported in the
literature. Moore and Chapman developed the first MOPSO
based on Pareto dominance6, in which they especially
emphasized on the importance of performing both an
individual and a group search. The individual best (pbest) of
all the non-dominated solutions found in the trajectory of a
particle is put into a list, and the pbest selection is
performed on the list. Mostaghim and Teich proposed the
sigma method for finding the best local guides for each
particle of the population9, which has been implemented and
compared with the method that uses the strategy of an
existing MOPSO for finding the local guides. Fieldsend et al.
employed an order applied to members of non-dominated
sets according to the recent dominated tree data structure to
facilitate the selection of the best global individual for each
member of the swarm, in order to direct their velocities.10
Coello et al. incorporated Pareto dominance into particle
swarm optimization in order to allow this heuristic to handle
problems with several objective functions.11 The algorithm
uses a secondary repository of particles that is later used by
other particles to guide their own flight. A special mutation
operator is incorporated to enrich the exploratory
capabilities of the algorithm. Li X. proposed Non-
dominated Sorting Particle Swarm Optimizer (NSPSO) for
multi-objective optimization.12 NSPSO extends the basic
form of PSO by making a better use of particles’ individual
bests and offspring and comparing all particles’ individual
bests and their offspring in the entire population. Sierra et al.

Published by Atlantis Press
 Copyright: the authors
 591

proposed a new multi-objective particle swarm optimizer
based on Pareto dominance and a crowding factor to filter
out the list of available leaders.13 They use different
mutation operators to act on different subdivisions of the
swarm, and they also incorporate the -dominance concept
to fix the size of the set of final solutions produced by the
algorithm.

3.2. Coevolution

Generally speaking, the first attempt to study coevolution is
attributed to the cooperative GA by Potter and De Jong in
1994. They proposed a general model for coevolution of
cooperative species.14 The model was instantiated and tested
in the domain of function optimization and compared with a
traditional GA-based function optimizer, and the results
were encouraging. They also suggested ways to improve the
performance of GA and other EA-based optimizers and a
new approach to evolving complex structures such as neural
networks and rule sets.

Research on coevolutionary MOEAs based on GA has
also been reported. Tan KC et al. proposed a cooperative
coevolutionary algorithm (CCEA) for multi-objective
optimization7, which applies the divide-and-conquer
approach to decompose decision vectors into smaller
components and evolves multiple solutions in the form of
cooperative subpopulations. CCEA is capable of
maintaining archive diversity in the evolution and
distributing the solutions uniformly along the Pareto front.
Iorio AW and Li X proposed a cooperative coevolutionary
algorithm into which a novel collaboration formation
mechanism was incorporated.15 This approach encouraged
rewarding of components participating in successful
collaborations from each sub-population. Sierra MR et al
proposed a multiobjective coevolutionary algorithm16,
which concentrated the search effort on promising regions
that arose during the evolutionary process as a product of a
clustering mechanism applied to the set of decision
variables corresponding to the known Pareto front. Tan TG
et al. proposed a new algorithm which integrates
cooperative coevolutionary and the Strength Pareto
Evolutionary Algorithm 2 (SPEA2).17 They conducted
comprehensive empirical tests for cooperative coevolution
using an evolutionary multi-objective algorithm for 3-
dimensional problems.

Coevolution in PSO has also attracted a number of
researchers. van den Bergh et al. proposed a cooperative
particle swarm optimizer (CPSO) for single-objective
optimization problems18, which employed cooperative
behavior to significantly improve the performance of the
original algorithm. This is achieved by using multiple
swarms to optimize different components of the solution
vector cooperatively. Application of the new PSO algorithm
on several benchmark optimization problems showed
remarkable improvement on performance over the

traditional PSO. Furthermore, multipopulations have been
applied to improved PSO to locate multi-optima. Iwamatsu
et al. presented further simplification and improvement of a
modified particle swarm optimizer called the Multi-Species
Particle Swarm Optimizer (MSPSO).19 MSPSO divided the
particle swarm spatially into multiple clusters, called species,
in a multi-dimensional search space. Each species was
responsible for exploring a specific area of the search space
and trying to find out the global or local optima of that area.
Seo et al. proposed a new algorithm for the multimodal
function optimization20, and named it as multigrouped
particle swarm optimization (MGPSO), which had a unique
advantage in searching superior peaks of a multimodal
function when the number of groups is N.

Best to our knowledge, no research on cooperative
coevolutionary MOPSOs for high dimensional problems has
been found in literature up till now. However, researches on
cooperative algorithms for large scale optimization
problems were conducted several years ago. Xin Yao et al.
proposed the coevolution of FEP for single-objective
optimization, namely FEPCC.21 FEPCC showed that
coevolution could be used quite simply for enhancing the
performance of existing algorithms. The time used by
FEPCC to find a near optimal solution appeared to increase
linearly with respect to the dimensionality. Zhenyu Yang et
al. proposed two new efficient DE variants, named DECC-I
and DECC-II22, for high-dimensional optimization (up to
1000 dimensions), which were based on a cooperative
coevolution framework incorporated with several novel
strategies.

4. A scalable Cooperative Coevolution and –
dominance based multi-objective Particle Swarm
Optimizer

4.1. Problem decomposition and selection of
collaborators

In our study, problem decomposition is conducted with
respect to decision variables, which is simple and easy for
automatic decomposition. Each decision variable
corresponds to a subswarm, and these subswarms coevolve
individuals they contain. For,

min F(x) (3)
Where x=(x1, x2, …, xn), i.e. x includes n decision

variables, n subswarms are involved in the coevolution.
Frans van den Bergh et al. pointed out that if some of

the components in the vector were correlated, they should
be grouped in the same subswarm, since the independent
changes made by the different subswarms would have a
detrimental effect on correlated decision variables.18 This
results in consequence that some subswarms have m
decision variables and others having l decision variables,
which can be easily accommodated in the framework
presented above. Unfortunately, it is not always known in

Published by Atlantis Press
 Copyright: the authors
 592

advance how the components are related, so the simple
method above is often used and the total particle number is
exactly the sum of particles in each subswarm.

On the other hand, collaboration method selection for
CEPSO is among the most important tasks, because
collaboration method influences algorithm’s performance
on convergence, diversity, premature and so on. Although
the available choices are usually problem specific, two
methods are frequently used in practice. The first is simply
to select the best individual of the other subswarms and
construct context vectors(individual) to evaluate particles in
a subswarm, which is greedy and might not be satisfactory
in some cases. The second is to select individuals randomly
from other subswarms and construct context vectors, which
may slow the convergence rate because the selective
pressure is reduced.

In the proposed CEPSO, the first method is adopted,
since certain experiments showed that it is more robust
when no information about problems is available.23

4.2. Velocity update equation and Mutation operator

By analyzing the random variable in velocity update
equation, Maurice Clerc and Kennedy pointed out that some
modifications could improve the performance of PSO24, so a
new equation is proposed in this paper:

)4(
)()()(2

2
1

1

21











igii xp
r

r
cxp

r

r
cveliiwtvel

rrr

That means that

)5(1
2

2
1

1 c
r

r
c

r

r
c 

When c1=c2, this equation can be applied in more
algorithms and can also improve the performance of
MOPSO.25

Tournament selection is employed for the leader
selection to keep uniform distribution of the Pareto solutions.
Because all the solutions in -dominance based external
archive are nondominated, only crowding distance (CD) 26
is compared to determine which particle becomes a leader
when tournament size is set to 2.

PSO converges relatively rapidly in the first part of the
search and then slows down or stagnates. This behavior has
been attributed to the loss of diversity in the swarm, which
can lead to the whole swarm being trapped in a local
optimum and hard to escape. Therefore mutation operator is
often introduced in PSO to change the stagnation. Because
the global best individual attracts all members of the swarm,
it is possible to lead the swarm away from a current location
by mutating a single individual if the mutated individual
becomes the new global best.27 This mechanism potentially
provides a means that can readily escape from local optima
and speed up the search remarkably. In CEPSO, a simple
mutation operator based on uniform distribution is
incorporated, which randomly generate certain new particles

in the range of the decision variable and replace some
current particles, that is

popi=uniform(range(popi)) (6)
Where popi is the ith subswarm, uniform() is a uniform

distribution function and range() is a function to calculate
ranges of each decision variable.

The mutation operator is applied with probability pm.

4.3. -dominance based archive strategy

Convergence and diversity are two main metrics for
MOEAs. However, existing MOEAs either focus on
convergence or focus on a good distribution of solutions but
can not achieve both goals simultaneously. Based on the
concept of -dominance, Laumanns et al. proposed a new
archive strategy that led to MOEAs with desired
convergence and distribution properties.28 The -dominance
based archive strategy has a two-level concept. On the
coarse level, the search space is discretized into boxes by a
division according to eq. (7), where each vector uniquely
belongs to one box.












)1log(

log


i

i

f
b (7)

Using a generalized dominance relation on these boxes,
the algorithm always maintains a set of non-dominated
boxes, thus guaranteeing the -approximation property. On
the fine level one element is kept in each box at most.
Within a box, each representative vector can only be
replaced by a dominating one, thus guaranteeing
convergence with a bounded size according to eq. (8).
Mostaghim et al. investigated the role of -dominance in
MOPSOs and showed that the -dominance method can find
solutions much faster than the clustering technique with
comparable and even in some cases better convergence and
diversity.7 Therefore, -dominance based archive strategy is
adopted in the proposed algorithm.

)1(

)1log(

log













m

K
A


 (8)

After updating external archive, crowding distance is
calculated for each particle. The tournament selection of a
leader particle(gbest) is based on crowding distance. 26

4.4. The pseudo and flow chart of CEPSO

Two definitions introduced in CEPSO are given firstly for
generalization, which can satisfy different evolutionary
generations of subswarms and coevolutionary process, and
lead to easy adjustment to different problem features.

Definition 5 (generation). It refers one complete pass
through the fly or the mutation, the updates of all pi and the
update of the pg.

Definition 6 (cycle). It refers to evolve all subswarms
one time.

Published by Atlantis Press
 Copyright: the authors
 593

A scalable coevolutionary

update position popij according eq. (2); In this subsection, the pseudo of CEPSO in Matlab is
given in Algorithm CEPSO, whose parameters are presented
as follows.

limit position popij;

end

end maxgen: Maximum generation to evolve for each
subswarm select collaborators from other subswarms;

construct context vectors; maxcycle: Maximum cycle to coevolve
evaluate each particle in subswarm popi; pm: mutation probability
update each pbest in subswarm popi ; ps: particle number of each subswarm
update the archive A of swarm based on -dominance; popi: the ith subswarm
calculate CD of particles in A; popij: the ith particle in popi

end The flow chart and cooperation procedure of CEPSO is
described in Figure 1. end

end
Algorithm CEPSO output A
initialize n and ps;
initialize all subswarms pop i, i=1, 2, …, n;

5. Experiments and discussion initialize all subswarms velocity velij, i=1, 2, …, n, j=1, 2, …, ps;

pbestij=popij, i=1,2,…, n, j=1, 2, …, ps;
5.1. Benchmark functions construct an archive A baesd on popi, i=1, 2, …, n;

calculate CD of particles in A; The benchmark functions designed by K Deb et al. have
been widely accepted29, because they feature test-necessary
properties: convexity, nonconvexity, discreteness and
nonuniformity. The selected benchmark functions in this
paper are ZDT1, ZDT2, ZDT4 and ZDT6, each is structured
in the same manner and consists of three functions shown in
eq. (9).

for c=1:maxcycle;

for i=1: n

for k=1:maxgen

if rand<pm

popi=uniform(range(popi));

else

for m=1:size(popi)

),...,(

)9()),...,(),(()...,,()(

))(),(()(

1

21122

211

m

mm

xxxwhere

xxgxfhxxgxftoSubject

xfxfxTMinimize





select a leader from the archive A based

on tournament;
The definitions of benchmark functions are listed in

Table 1.
calculate velocity velij according eq. (2);

limit velocity velij;

Table 1. Benchmark functions
Function name Feature Definition Parameters

ZDT1 ZDT1 has a convex
Pareto-optimal front

gfgfh

Dxxxg

xxf

i

D

iD

/1),(

)1/(91)...,(

)(

11

22

111









),...,(1 Dxxx 

xi[0,1]
i=1,…,D

ZDT2 ZDT2 has a
nonconvex Pareto-
optimal front 2

11

22

111

)/(1),(

)1/(91)...,(

)(

gfgfh

Dxxxg

xxf

i

D

iD









),...,(1 Dxxx 

xi[0,1]
i=1,…,D

ZDT4 ZDT4 has 219 local
optima in its Pareto
front







D

i ii xxDxg

xgxxgxf

xxf

2

2

12

11

)]4cos(10[)1(101)(

])(/1)[()(

)(



),...,(1 Dxxx 

x1[0,1]
xi[-5,5], i=2,…,D

ZDT6 The pareto front of
ZDT6 is
nonuniform

..., xg
2

11

25.0

22

1

6

111

)/(1),(

))1/((91)(

)6(sin)4exp(1)(

gfgfh

Dxx

xxxf

i

D

iD











),...,(1 Dxxx 

xi[0,1]
i=1,…,D

Published by Atlantis Press
 Copyright: the authors
 594

Initialize all subswarms popi,
veli, pi and pg

c<=maxcycle?

5.2. Metrics

In this paper, three metrics for MOPs are employed and
described in the following.

(1) Solution Number in Archive (SNA)
SNA is defined as the reserved solution number in

external archive. This measure could embody the ability of
MOPSOs to find more solutions as possible. So the bigger
the SNA is, the better the MOPSO is.

(2) Generational Distance (GD)
The metric of generational distance represents how

“far” the known Pareto front (PFknown) is away from the
true Pareto front (PFtrue)

11:
pn

i

p

id
n

GD

1

1

)(
1







 



 (10)

Where n is the number of members in PFknown, di is the
Euclidean distance (in the objective domain) between the
member in PFknown and its nearest member in PFtrue.

(3) Spacing
Spacing is a metric measuring range (distance)

variance of neighboring vectors in the nondominated
vectors found so far. Since the “beginning” and “end” of
current Pareto front found are known, the metric judges
how well the solutions in such front are distributed11. This
metric is defined in eq. (11).








n

i
idd

n
S

1

2)(
1

1 (11)

Where
 














n

k
i

jiji

ji

d
n

dnji

xfxfxfxfd

1

2211

1
;...1,

)()()()(min
 (12)

d is the mean of all solutions found so far, and n is the
number of nondominated vectors. A value of zero for this
metric indicates all members of the Pareto front currently
available are equidistantly spaced. The metric addresses
the second issue previously mentioned, namely good
distribution of Pareto solutions.

Locate a subswarm popi

Rand>=pm?

Fly Mutate

N

Y

Select collaborators

Evaluate particles

Update pi

k=k+1

k<maxgen?
Y

Y
N

c=c+1

End

pop1

pop2

popn-1

……

popn

Construct context vectors

Update archive A

N

Calculate CD

i=i+1

N

Fig. 1. Flowchart and cooperation procedure of CEPSO

i<n?
Y

Published by Atlantis Press
 Copyright: the authors
 595

5.3. Results and discussion

For the results presented in the following, the function
evaluations needed by CEPSO are increased linearly with
respect to the number of decision variables (D) and can be
calculated by eq. (13).

functionevaluations=psDmaxgenmaxcycle (13)

The main parameters of the experiments are set as
follows:

 ps=10(subswarm size)
 pm=0.3(mutation probability)
 c1=c2=2
 =1.0~0.4
 maxgen=1
 maxcycle=50

CEPSO is independently run 30 times for each
benchmark function and the experimental results are
summarized in Table 2~5 and Figure 3~18.

Table 2. Statistical results for ZDT1

SNA GD Spacing

D max mean min max mean min max mean min

250 42 40 37 3.00E-18 8.59E-19 0.00E+00 1.99E-02 8.49E-03 4.10E-04

500 42 40 38 2.85E-18 6.77E-19 0.00E+00 1.52E-02 8.99E-03 2.63E-03

750 42 40 38 2.92E-18 7.55E-19 0.00E+00 1.94E-02 8.69E-03 1.20E-03

1000 42 40 38 2.85E-18 1.07E-18 0.00E+00 1.91E-02 8.24E-03 5.54E-04

Table 3. Statistical results for ZDT2

SNA GD Spacing

D max mean min max mean min max mean min

250 22 22 21 5.05E-18 1.68E-18 0.00E+00 4.96E-03 1.80E-03 2.48E-04

500 22 22 22 5.05E-18 1.18E-18 0.00E+00 1.11E-02 1.83E-03 1.45E-04

750 22 22 22 5.05E-18 5.89E-19 0.00E+00 6.37E-03 1.78E-03 9.04E-05

1000 22 22 22 5.05E-18 5.89E-19 0.00E+00 4.58E-03 1.48E-03 7.73E-05

Table 4. Statistical results for ZDT4

SNA GD Spacing

D max mean min max mean min max mean min

250 42 40 38 2.78E-18 9.48E-19 0.00E+00 1.85E-02 8.56E-03 1.32E-03

500 42 40 39 2.64E-18 6.69E-19 0.00E+00 1.56E-02 7.27E-03 1.16E-04

750 42 40 38 2.85E-18 7.40E-19 0.00E+00 1.67E-02 9.13E-03 6.92E-04

1000 42 39 38 3.89E-18 1.26E-18 0.00E+00 2.35E-02 9.73E-03 6.33E-04

Table 5. Statistical results for ZDT6

SNA GD Spacing

D max mean min max mean min max mean min

250 20 19 16 5.84E-18 1.18E-18 0.00E+00 2.73E-02 1.68E-02 1.07E-02

500 19 18 16 6.94E-18 1.15E-18 0.00E+00 1.97E-02 1.50E-02 1.06E-02

750 20 19 16 5.84E-18 4.01E-19 0.00E+00 3.68E-02 1.66E-02 1.11E-02

1000 20 18 16 6.53E-18 1.22E-18 0.00E+00 2.96E-02 1.57E-02 1.21E-02

Figure 2 Pareto front of ZDT1(D=1000)

Figure 3 SNA of ZDT1

Published by Atlantis Press
 Copyright: the authors
 596

Figure 4 GD of ZDT1 Figure 8 GD of ZDT2

Figure 10 Pareto front of ZDT4(D=1000)

Figure 9 Spacing of ZDT2

Figure 6 Pareto front of ZDT2(D=1000)

Figure 5 Spacing of ZDT1

Figure 11 SNA of ZDT4 Figure 7 SNA of ZDT2

Published by Atlantis Press
 Copyright: the authors
 597

Figure 16 GD of ZDT6 Figure 12 GD of ZDT4

Figure 17 Spacing of ZDT6 Figure 13 Spacing of ZDT4

The benchmark function ZDT1 and ZDT2 are relatively

simple. Most MOPSOs can solve the two problems with 30
decision variables (Tables and figures for 10~100D are
omitted in this paper). Not only can CEPSO solve ZDT1
and ZDT2 with 30 decision variables but also problems with
up to 1000 decision variables. The simulation results for the
high dimensional problems are given in Table 2~3 and
Figure 2~9. As can be seen from these tables and figures,
for the metric of SNA, there is a little change in number.
The GD is negligibly tiny to 10-19, which means that PFknown
is almost unlimitedly near PFtrue. On the other hand, the
Spacing is stable and there is no difference among various
dimensions, but the Spacing of ZDT1 is better than that of
ZDT2.

Figure 14 Pareto front of ZDT6(D=1000)

The benchmark function ZDT4 and ZDT6 are more
difficult than ZDT1 and ZDT2. Again, not only can CEPSO
solve ZDT2 and ZDT4 with 30 decision variables but also
solve problems with up to 1000 decision variables. The
benchmark function ZDT4 has 219 local optima and most
MOPSOs are easily trapped in them. The simulation results
for the high dimensional problems are given in Table 4 and
Figure 10~13. As can be seen, for the metric of SNA, there
is some changes in number. However, the least is 38, which
is a reasonable result. The GD is very tiny and is about 10-19.
Most runs can obtain true Pareto front. On the other hand,
the Spacing is stable and there is no difference among
various dimensions.

Figure 15 SNA of ZDT6

Published by Atlantis Press
 Copyright: the authors
 598

ZDT6 is also a difficult problem for its solutions are not
uniformly distributed in its Pareto front. The simulation
results for the high dimensional problems are given in Table
5 and Figure 14~17. As can be seen, for the metric of SNA,
there is little changes in number. In fact, ZDT2 and ZDT6
have the same Pareto front. However, the metric of SNA for
ZDT2 is better than ZDT6, while GD and Spacing are
similar to ZDT2.

These simulation results demonstrated that CEPSO can
solve MOPs with up to 1000 decision variables but the
numbers of function evaluations are only linear with respect
to them, which means that CEPSO has good scalability for
dealing with various MOPs.

6. Conclusion and future works

A scalable cooperative coevolution and -dominance based
MOPSO is proposed and delineated. The experimental
results show that CEPSO can not only solve MOPs with
30~100 decision variables but also MOPs with up to 1000
decision variables with fair scalability. Besides, function
evaluation numbers are only linear with respect to the
number of decision variables. Considering the fact that most
MOPSOs can only solve MOPs with 10~30 decision
variables and their performance will deteriorate when
decision variables are 100 or above, the proposed approach
is much promising.

The future work will focus more on theoretical analysis
and mathematical formulation and proof on one hand. On
the other hand, we will attempt to reduce the run time to a
certain magnitude. We will also try parallel implementation
of CEPSO, which can reduce the run time other way around.
And finally, we will apply CEPSO to practical applications,
which will realize the true value of our research work.

Acknowledgement

We are grateful for the support of National Natural
Science Foundation of China (60970004) and A Project of
Shandong Province Higher Educational Science and
Technology Program (J10LG08). We also thank the
anonymous reviewers for their helpful advices.

References

1. C.A.C. Coello, Evolutionary multi-objective optimization: A
historical view of the field, IEEE Computational Intelligence
Magazine, 1(1) (2006) 2836.

2. Enrique H. Ruspini, Soft Computing: Coping with
Complexity, International Journal of Computational
Intelligence Systems, 3(2) (2010) 190-196.

3. M.R. Sierra and C.A.C. Coello, Multi-Objective particle
swarm optimizers: A survey of the state-of-the-art, Int’l
Journal of Computational Intelligence Research, 2(3) (2006)
287308.

4. L. Hu, X. Che, X. Cheng, Bandwidth Prediction based on
Nu-Support Vector Regression and Parallel Hybrid Particle

Swarm Optimization, International Journal of
Computational Intelligence Systems, 3(1) (2010) 70-83.

5. J. Kennedy and R.C. Eberhart, Particle swarm optimization,
in proc. of the IEEE Conf. on Neural Networks, (1995),
pp.19421948.

6. J. Moore, R. Chapman, Application of particle swarm to
multi-objective optimization, Department of Computer
Science and Software Engineering, (Auburn University,
1999).

7. K.C. Tan, Y.J. Yang and C.K. Goh, A distributed
cooperative coevolutionary algorithm for multiobjective
optimization, IEEE Trans. on Evolutionary Computation,
10(5) (2006) 527549.

8. S. Mostaghim, J. Teich, The role of -dominance in multi
objective particle swarm optimization methods, in proc. of
2003 Congress on Evolutionary Computation, (2003),
pp.17641771.

9. S. Mostaghim, J. Teich, Strategies for finding good local
guides in multi-objective particle swarm optimization
(MOPSO), in proc. of IEEE Swarm Intelligence Symposium,
(2003), pp.26–33.

10. J. Fieldsend and S. Singh, A multiobjective algorithm based
upon particle swarm optimization, an efficient data structure
and turbulence, in proc. of the 2002 U.K. Workshop on
Computational Intelligence, (2002), pp.37–44.

11. C.A.C. Coello, G. Pulido, and M. Lechuga, Handling
multiple objectives with particle swarm optimization, IEEE
Transactions on Evolutionary Computation, 8(3) (2004)
256–279.

12. X. Li, A non-dominated sorting particle swarm optimizer for
multi-objective optimization, in proc. of the Genetic and
Evolutionary Computation Conference, (2003), pp.37–48.

13. M.R. Sierra and C.A.C. Coello, Improving PSO-based multi-
objective optimization using crowding, mutation and -
dominance, in proc. of Third International Conference on
Evolutionary Multi-Criterion Optimization, Lecture Notes in
Computer Science, 3410 (2005) 505–519.

14. M.A. Potter, K.A. De Jong, A cooperative coevolutionary
approach to function optimization, in proc. of the 3rd
Parallel Problem Solving from Nature, (1994), pp.249257.

15. A.W. Iorio, and X. Li, A Cooperative Coevolutionary
Multiobjective Algorithm Using non-dominated Sorting, in
proc. of the Genetic and Evolutionary Computation
Conference, Lecture Notes in Computer Science, 3102 (2004)
537-548.

16. M.R. Sierrra and C.A.C. Coello, Coevolutionary
Multiobjective Optimization using Clustering Techniques,
Advances in Artificial Intelligence, Lecture Notes in
Artificial Intelligence, 3789 (2005) 603–612.

17. T.G. Tan, H.K. Lau, J. Teo, Cooperative coevolution for
pareto multiobjective optimization: An empirical study using
SPEA2, in proc. of 2007 IEEE Region 10 International
Conference on TENCON, (2007), pp.1-4.

18. F. van den Bergh and A.P. Engelbrecht, A cooperative
approach to particle swarm optimization, IEEE Transaction
on Evolutionary Computation, 8(3) (2004) 225239.

19. M. Iwamatsu, Locating all global minima using multi-species
particle swarm optimizer: The inertia weight and the
constriction factor variants, in proc. of the 2006 IEEE
Congress on Evolutionary Computation, (2006), pp.816822.

20. J.H. Seo, C.H. Im, Heo et al. Multimodal function
optimization based on particle swarm optimization, IEEE
Trans. on Magnetics, 42(4) (2006) 10951098.

21. X. Yao, Y. Liu, J. Li, J. He and C. Frayn, Current
developments and future directions of bio-inspired
computation and mplications for ecoinformatics, Ecological
informatics, 1 (2006) 9-22.

22. Z. Yang, K. Tang, and X. Yao, Differential Evolution for
high-dimensional function optimization, Proc. IEEE

Published by Atlantis Press
 Copyright: the authors
 599

A scalable coevolutionary

Congress on Evolutionary Computation, (2007), pp.3523-
3530.

23. P. Wiegand, W. Liles and K. De Jong, An empirical analysis
of collaboration methods in cooperative coevolutionary
algorithms, in proc. of Genetic and Evolutionary
Computation Conference, (2001), pp. 1235-1242.

24. M. Clerc, J. Kennedy, The particle swarm: Explosion,
stability, and convergence in a multi-dimensional complex
space, IEEE Trans. on Evolutionary Computation, 6(1)
(2002) 5873.

25. X. Zheng and H. Liu, A hybrid vertical mutation and self-
adaptation based MOPSO, Computers and Mathematics with
Applications, 57(3/4) (2009) 2030-2038.

26. K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A Fast and
Elitist Multiobjective Genetic Algorithm: NSGA–II, IEEE
Transactions on Evolutionary Computation, 6(2) (2002)
182–197.

27. P.S. Andrews, An investigation into mutation operators for
particle swarm optimization, in proc. of the 2006 Congress
on Evolutionary Computation, (2006), pp.1044-1051.

28. M. Laumanns, L. Thiele, K. Deb and E. Zitzler, Combining
convergence and diversity in evolutionary multi-objective
optimization, Evolutionary Computation, 10(3) (2002)
263282.

29. E. Zitzler, K. Deb and L. Thiele, Comparison of multi-
objective evolutionary algorithms: empirical results,
Evolutionary Computation, 8(2) (2000) 173195.

Published by Atlantis Press
 Copyright: the authors
 600

	1. Introduction
	2. Basic concepts
	3. Related work
	3.1. MOPSO
	3.2. Coevolution

	4. A scalable Cooperative Coevolution and (–dominance based multi-objective Particle Swarm Optimizer
	4.1. Problem decomposition and selection of collaborators
	4.2. Velocity update equation and Mutation operator
	4.3. (-dominance based archive strategy
	4.4. The pseudo and flow chart of CEPSO

	5. Experiments and discussion
	5.1. Benchmark functions
	5.2. Metrics
	5.3. Results and discussion

	6. Conclusion and future works
	Acknowledgement
	References

