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Abstract 

Multi-Objective Particle Swarm Optimizers (MOPSOs) are easily trapped in local optima, cost more function evaluations 
and suffer from the curse of dimensionality. A scalable cooperative coevolution and -dominance based MOPSO 
(CEPSO) is proposed to address these issues. In CEPSO, Multi-objective Optimization Problems (MOPs) are 
decomposed in terms of their decision variables and are optimized by cooperative coevolutionary subswarms, and a 
uniform distribution mutation operator is adopted to avoid premature convergence. All subswarms share an external 
archive based on -dominance, which is also used as a leader set. Collaborators are selected from the archive and used to 
construct context vectors in order to evaluate particles in a subswarm. CEPSO is tested on several classical MOP 
benchmark functions and experimental results show that CEPSO can readily escape from local optima and optimize both 
low and high dimensional problems, but the number of function evaluations only increases linearly with respect to the 
number of decision variables. Therefore, CEPSO is competitive in solving various MOPs.  

Keywords: Multi-objective optimization; Scalable; Cooperative coevolution; -dominance; MOPSO(multi-objective 
particle swarm optimizer) 

 

1. Introduction 

Multi-objective Optimization Problems (MOPs) are a class 
of problems frequently encountered in various fields of 
science and technologies. Such problems can be very 
complex when certain pragmatic functions and specific 
model constraints come into place. Traditional methods, 
such as mathematical programming, are robust and have   
been proved their effectiveness in handling a variety of 
common MOPs. However, such techniques have been found 
to encounter difficulties such as easily getting trapped in 
local optima, intolerable computational complexity, and 
inapplicable to certain kinds of objective functions.1 To 
overcome these shortcomings, heuristic optimization 
techniques have been developed, among which Multi-
Objective Particle Swarm Optimizers (MOPSOs) are 
especially promising.2-3 

Researches on MOPSO is grounded on the successful 
application of Particle Swarm Optimizer (PSO)4, a 
population based stochastic optimization technique 
developed by Kennedy and Eberhart in 19955, and the fact 
that several improved PSOs are proven to produce very 
good results at a very low computational cost. Moore and 
Chapman proposed the first extension of PSO strategy for 
solving multi-objective problems in an unpublished 
manuscript in 19996, which is recognized as the origin of 

MOPSOs. Since this earliest attempt, special interest in 
extending PSO have bursted among researchers, and over 
30 different proposals of MOPSOs have been reported in 
literature thus far. However, all these MOPSOs are more or 
less suffered from severe drawbacks including being easily 
trapped in local optima, unbearable number of function 
evaluations and the curse of dimensionality.  

Recently coevolution has been studied by many 
researchers and shown success to complex and unstructured 
problems7, and -dominance based archive strategy has also 
demonstrated satisfactory convergence and distribution 
properties8, which inspires our research.  

In this paper, a scalable Cooperative Coevolution and -
dominance based multi-objective Particle Swarm Optimizer 
(CEPSO) is proposed to counter the above mentioned 
MOPSO disadvantages. In CEPSO, the MOPs are 
decomposed with respect to their decision variables and are 
optimized by cooperative coevolutionary subswarms. A 
uniform distribution mutation operator is adopted to avoid 
premature convergence. All subswarms share an external 
archive based on -dominance, which is also served as a 
leader set. Collaborators are selected from the archive and 
used to construct context vectors in order to evaluate 
particles in a subswarm. CEPSO is tested on several 
classical MOP benchmark functions and experimental 
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results show that CEPSO can readily escape from local 
optima and optimize both low and high dimensional 
problems while the number of function evaluations just 
increases linearly with respect to the number of decision 
variables.  

The remainder of this paper is organized as follows: 
Section 2 describes basic concepts of MOPs; Section 3 
reviews MOPSOs and related work on coevolutionary 
evolutionary algorithms; Section 4 details the proposed 
CEPSO, including problem decomposition, selection of 
collaborators, flow chart and the algorithm in pseudo code; 
In Section 5, experimental results on several benchmark 
functions are presented and discussed; And finally Section 6 
concludes the paper and points out possible future work. 

2. Basic concepts 

In MOPs, commonly a set of non-dominated solutions are 
generated instead of a single recommended solution. 
According to the concept of non-dominance, also referred to 
as Pareto optimal, a solution to a multiobjective problem is 
nondominated, if no objective can be improved without 
worsening at least one other objective. Without loss of 
generality, we define the MOPs in eq. (1). 

Min f(x) = [f1(x), f2(x), …, fk(x)]                        (1) 
Where x is the decision vector and fi is the ith objective 

function, where i=1,…,k. To describe the concept of Pareto 
optimal in MOPs, several definitions must be given first. 

Definition 1 (Pareto dominance). A decision vector x0 
dominates x1, denoted as , iff  )( 1xx 0

fi(x0) fi(x1), i = 1 ,2 , …, k  
fi(x0)<fi(x1), i { 1 ,2 , …, k} ∈  
Definition 2 (Pareto optimal or Pareto 

nondominance). A decision vector x0 is Pareto optimal iff 
 

011

Definition 3 (Pareto optimal set).  Pareto optimal set is 
a set containing all the Pareto optimal vectors. 

 

xxx ：

}|{ 010 xxxPs 
Definition 4 (Pareto Front). It is defined as 

PF={f(x)=(f1(x), f2(x), …, fk(x)) | x∈Ps} 

3. Related work 

3.1. MOPSO  

PSO is a relatively new population-based stochastic 
optimization technique developed by Kennedy and Eberhart 
in 1995. 5 PSO emulates swarm behavior of insects, animals 
herding, birds flocking, and fish schooling, in which 
collaborative search for food exhibits a potential 
computational model. Each member in the swarm adapts its 
search patterns by learning its own experiences and other 
members’. These phenomena have been studied 
scientifically and a relevant computing model, the so-called 
Partical Swarm Optimization or PSO has been constructed, 
which can be described informally as follows.  

A member in the swarm, called a particle, represents a 
potential solution which is a point in the search space. The 
global optimum is regarded as the location of food. Each 
particle uses both an adaptable fitness value and an 
adaptable velocity to adjust its flying direction according to 
the best experiences of the swarm to search for the global 
optimum in a n-dimensional solution space. 

The trajectory of each individual in the search space is 
adjusted by dynamically altering its velocity according to its 
own flying experiences as well as the others’. The position 
vector and the velocity vector of the ith particle in the n-
dimensional search space can be represented as xi=(xi1, 
xi2, …, xin) and vi=(vi1, vi2, …, vin) respectively. Given a user 
defined fitness function, denote the best position obtained 
by the best fitness value of a particle at time t as pi=(pi1, 
pi2, …, pin), which is named as pbest, further denote the 
fittest particle found so far at time t as pg=(pg1, pg2, …, pgn), 
which is named as gbest, then, the new velocity and position 
of particle i at time t+1 can be calculated using eq. (2). 







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iii          (2) 

Where c1 and c2 are constants known as acceleration 
coefficients, and r1 and r2 are two separately generated 
uniformly distributed random numbers in range [0,1]. 

Successful applications of PSO encouraged its 
introduction to the field of MOPs. Up till now, there have 
been dozens of representative MOPSOs reported in the 
literature. Moore and Chapman developed the first MOPSO 
based on Pareto dominance6, in which they especially 
emphasized on the importance of performing both an 
individual and a group search. The individual best (pbest) of 
all the non-dominated solutions found in the trajectory of a 
particle is put into a list, and the pbest selection is 
performed on the list. Mostaghim and Teich proposed the 
sigma method for finding the best local guides for each 
particle of the population9, which has been implemented and 
compared with the method that uses the strategy of an 
existing MOPSO for finding the local guides. Fieldsend et al. 
employed an order applied to members of non-dominated 
sets according to the recent dominated tree data structure to 
facilitate the selection of the best global individual for each 
member of the swarm, in order to direct their velocities.10 
Coello et al. incorporated Pareto dominance into particle 
swarm optimization in order to allow this heuristic to handle 
problems with several objective functions.11 The algorithm 
uses a secondary repository of particles that is later used by 
other particles to guide their own flight. A special mutation 
operator is incorporated to enrich the exploratory 
capabilities of the algorithm. Li X. proposed Non-
dominated Sorting Particle Swarm Optimizer (NSPSO) for 
multi-objective optimization.12 NSPSO extends the basic 
form of PSO by making a better use of particles’ individual 
bests and offspring and comparing all particles’ individual 
bests and their offspring in the entire population. Sierra et al. 
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proposed a new multi-objective particle swarm optimizer 
based on Pareto dominance and a crowding factor to filter 
out the list of available leaders.13 They use different 
mutation operators to act on different subdivisions of the 
swarm, and they also incorporate the -dominance concept 
to fix the size of the set of final solutions produced by the 
algorithm. 

3.2. Coevolution  

Generally speaking, the first attempt to study coevolution is 
attributed to the cooperative GA by Potter and De Jong in 
1994. They proposed a general model for coevolution of 
cooperative species.14 The model was instantiated and tested 
in the domain of function optimization and compared with a 
traditional GA-based function optimizer, and the results 
were encouraging. They also suggested ways to improve the 
performance of GA and other EA-based optimizers and a 
new approach to evolving complex structures such as neural 
networks and rule sets.  

Research on coevolutionary MOEAs based on GA has 
also been reported. Tan KC et al. proposed a cooperative 
coevolutionary algorithm (CCEA) for multi-objective 
optimization7, which applies the divide-and-conquer 
approach to decompose decision vectors into smaller 
components and evolves multiple solutions in the form of 
cooperative subpopulations. CCEA is capable of 
maintaining archive diversity in the evolution and 
distributing the solutions uniformly along the Pareto front. 
Iorio AW and Li X proposed a cooperative coevolutionary 
algorithm into which a novel collaboration formation 
mechanism was incorporated.15 This approach encouraged 
rewarding of components participating in successful 
collaborations from each sub-population. Sierra MR et al 
proposed a multiobjective coevolutionary algorithm16, 
which concentrated the search effort on promising regions 
that arose during the evolutionary process as a product of a 
clustering mechanism applied to the set of decision 
variables corresponding to the known Pareto front. Tan TG 
et al. proposed a new algorithm which integrates 
cooperative coevolutionary and the Strength Pareto 
Evolutionary Algorithm 2 (SPEA2).17 They conducted 
comprehensive empirical tests for cooperative coevolution 
using an evolutionary multi-objective algorithm for 3-
dimensional problems. 

Coevolution in PSO has also attracted a number of 
researchers. van den Bergh et al. proposed a cooperative 
particle swarm optimizer (CPSO) for single-objective 
optimization problems18, which employed cooperative 
behavior to significantly improve the performance of the 
original algorithm. This is achieved by using multiple 
swarms to optimize different components of the solution 
vector cooperatively. Application of the new PSO algorithm 
on several benchmark optimization problems showed 
remarkable improvement on performance over the 

traditional PSO. Furthermore, multipopulations have been 
applied to improved PSO to locate multi-optima. Iwamatsu 
et al. presented further simplification and improvement of a 
modified particle swarm optimizer called the Multi-Species 
Particle Swarm Optimizer (MSPSO).19 MSPSO divided the 
particle swarm spatially into multiple clusters, called species, 
in a multi-dimensional search space. Each species was 
responsible for exploring a specific area of the search space 
and trying to find out the global or local optima of that area. 
Seo et al. proposed a new algorithm for the multimodal 
function optimization20, and named it as multigrouped 
particle swarm optimization (MGPSO), which had a unique 
advantage in searching superior peaks of a multimodal 
function when the number of groups is N.  

Best to our knowledge, no research on cooperative 
coevolutionary MOPSOs for high dimensional problems has 
been found in literature up till now. However, researches on 
cooperative algorithms for large scale optimization 
problems were conducted several years ago. Xin Yao et al. 
proposed the coevolution of FEP for single-objective 
optimization, namely FEPCC.21 FEPCC showed that 
coevolution could be used quite simply for enhancing the 
performance of existing algorithms. The time used by 
FEPCC to find a near optimal solution appeared to increase 
linearly with respect to the dimensionality. Zhenyu Yang et 
al. proposed two new efficient DE variants, named DECC-I 
and DECC-II22, for high-dimensional optimization (up to 
1000 dimensions), which were based on a cooperative 
coevolution framework incorporated with several novel 
strategies.  

4. A scalable Cooperative Coevolution and –
dominance based multi-objective Particle Swarm 
Optimizer  

4.1. Problem decomposition and selection of 
collaborators 

In our study, problem decomposition is conducted with 
respect to decision variables, which is simple and easy for 
automatic decomposition. Each decision variable 
corresponds to a subswarm, and these subswarms coevolve 
individuals they contain. For,  

min F(x)                                                 (3) 
Where x=(x1, x2, …, xn), i.e. x includes n decision 

variables, n subswarms are involved in the coevolution. 
Frans van den Bergh et al. pointed out that if some of 

the components in the vector were correlated, they should 
be grouped in the same subswarm, since the independent 
changes made by the different subswarms would have a 
detrimental effect on correlated decision variables.18 This 
results in consequence that some subswarms have m 
decision variables and others having l decision variables, 
which can be easily accommodated in the framework 
presented above. Unfortunately, it is not always known in 
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advance how the components are related, so the simple 
method above is often used and the total particle number is 
exactly the sum of particles in each subswarm. 

On the other hand, collaboration method selection for 
CEPSO is among the most important tasks, because 
collaboration method influences algorithm’s performance 
on convergence, diversity, premature and so on. Although 
the available choices are usually problem specific, two 
methods are frequently used in practice. The first is simply 
to select the best individual of the other subswarms and 
construct context vectors(individual) to evaluate particles in 
a subswarm, which is greedy and might not be satisfactory 
in some cases. The second is to select individuals randomly 
from other subswarms and construct context vectors, which 
may slow the convergence rate because the selective 
pressure is reduced.  

In the proposed CEPSO, the first method is adopted, 
since certain experiments showed that it is more robust 
when no information about problems is available.23 

4.2. Velocity update equation and Mutation operator 

By analyzing the random variable in velocity update 
equation, Maurice Clerc and Kennedy pointed out that some 
modifications could improve the performance of PSO24, so a 
new equation is proposed in this paper: 
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When c1=c2, this equation can be applied in more 
algorithms and can also improve the performance of 
MOPSO.25 

Tournament selection is employed for the leader 
selection to keep uniform distribution of the Pareto solutions. 
Because all the solutions in -dominance based external 
archive are nondominated, only crowding distance (CD) 26 
is compared to determine which particle becomes a leader 
when tournament size is set to 2. 

PSO converges relatively rapidly in the first part of the 
search and then slows down or stagnates. This behavior has 
been attributed to the loss of diversity in the swarm, which 
can lead to the whole swarm being trapped in a local 
optimum and hard to escape. Therefore mutation operator is 
often introduced in PSO to change the stagnation. Because 
the global best individual attracts all members of the swarm, 
it is possible to lead the swarm away from a current location 
by mutating a single individual if the mutated individual 
becomes the new global best.27 This mechanism potentially 
provides a means that can readily escape from local optima 
and speed up the search remarkably. In CEPSO, a simple 
mutation operator based on uniform distribution is 
incorporated, which randomly generate certain new particles 

in the range of the decision variable and replace some 
current particles, that is  

popi=uniform(range(popi))                         (6) 
Where popi is the ith subswarm, uniform() is a uniform 

distribution function and range() is a function to calculate 
ranges of each decision variable. 

The mutation operator is applied with probability pm. 

4.3. -dominance based archive strategy 

Convergence and diversity are two main metrics for 
MOEAs. However, existing MOEAs either focus on 
convergence or focus on a good distribution of solutions but 
can not achieve both goals simultaneously. Based on the 
concept of -dominance, Laumanns et al. proposed a new 
archive strategy that led to MOEAs with desired 
convergence and distribution properties.28 The -dominance 
based archive strategy has a two-level concept. On the 
coarse level, the search space is discretized into boxes by a 
division according to eq. (7), where each vector uniquely 
belongs to one box. 


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b                                       (7) 

Using a generalized dominance relation on these boxes, 
the algorithm always maintains a set of non-dominated 
boxes, thus guaranteeing the -approximation property. On 
the fine level one element is kept in each box at most. 
Within a box, each representative vector can only be 
replaced by a dominating one, thus guaranteeing 
convergence with a bounded size according to eq. (8). 
Mostaghim  et al. investigated the role of -dominance in 
MOPSOs and showed that the -dominance method can find 
solutions much faster than the clustering technique with 
comparable and even in some cases better convergence and 
diversity.7 Therefore, -dominance based archive strategy is 
adopted in the proposed algorithm. 
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After updating external archive, crowding distance is 
calculated for each particle. The tournament selection of a 
leader particle(gbest) is based on crowding distance. 26  

4.4. The pseudo and flow chart of CEPSO 

Two definitions introduced in CEPSO are given firstly for 
generalization, which can satisfy different evolutionary 
generations of subswarms and coevolutionary process, and 
lead to easy adjustment to different problem features. 

Definition 5 (generation). It refers one complete pass 
through the fly or the mutation, the updates of all pi and the 
update of the pg. 

Definition 6 (cycle). It refers to evolve all subswarms 
one time. 
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A scalable coevolutionary  

update position popij according eq. (2); In this subsection, the pseudo of CEPSO in Matlab is 
given in Algorithm CEPSO, whose parameters are presented 
as follows. 

limit position popij; 

end 

end maxgen: Maximum generation to evolve for each 
subswarm select collaborators from other subswarms; 

construct context vectors; maxcycle: Maximum cycle to coevolve  
evaluate each particle in subswarm popi; pm: mutation probability 
update each pbest in subswarm popi ; ps: particle number of each subswarm 
update the archive A of swarm based on -dominance; popi: the ith subswarm 
calculate CD of particles in A; popij: the ith particle in popi 

end The flow chart and cooperation procedure of CEPSO is 
described in Figure 1.  end 

end  
Algorithm CEPSO output A 
initialize n and ps;  
initialize all subswarms pop i, i=1, 2, …, n; 

5. Experiments and discussion initialize all subswarms velocity velij, i=1, 2, …, n, j=1, 2, …, ps; 

pbestij=popij, i=1,2,…, n, j=1, 2, …, ps; 
5.1. Benchmark functions construct an archive A baesd on popi, i=1, 2, …, n; 

calculate CD of particles in A; The benchmark functions designed by K Deb et al. have 
been widely accepted29, because they feature test-necessary 
properties: convexity, nonconvexity, discreteness and 
nonuniformity. The selected benchmark functions in this 
paper are ZDT1, ZDT2, ZDT4 and ZDT6, each is structured 
in the same manner and consists of three functions shown in 
eq. (9). 

for c=1:maxcycle; 

for i=1: n 

for k=1:maxgen 

if rand<pm 

popi=uniform(range(popi)); 

else  

for m=1:size(popi) 

),...,(
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xfxfxTMinimize
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
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select a leader from the archive A based  

on tournament; 
The definitions of benchmark functions are listed in 

Table 1. 
calculate velocity velij according eq. (2); 

limit velocity velij; 

 

Table 1. Benchmark functions 
Function name Feature Definition Parameters 

ZDT1 ZDT1 has a convex 
Pareto-optimal front 
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xi[0,1] 
i=1,…,D 

ZDT4 ZDT4 has 219 local 
optima in its Pareto 
front 
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x1[0,1] 
xi[-5,5], i=2,…,D 

ZDT6 The pareto front of 
ZDT6 is 
nonuniform 
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Initialize all subswarms popi, 
veli, pi and pg 

c<=maxcycle? 

 
 

5.2. Metrics 

In this paper, three metrics for MOPs are employed and 
described in the following. 

(1) Solution Number in Archive (SNA) 
SNA is defined as the reserved solution number in 

external archive. This measure could embody the ability of 
MOPSOs to find more solutions as possible. So the bigger 
the SNA is, the better the MOPSO is. 

(2) Generational Distance (GD) 
The metric of generational distance represents how 

“far” the known Pareto front (PFknown) is away from the 
true Pareto front (PFtrue) 

11: 
pn

i

p

id
n

GD

1

1

)(
1
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



 
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                          (10) 

Where n is the number of members in PFknown, di is the 
Euclidean distance (in the objective domain) between the 
member in PFknown and its nearest member in PFtrue. 

(3) Spacing  
Spacing is a metric measuring range (distance) 

variance of neighboring vectors in the nondominated 
vectors found so far. Since the “beginning” and “end” of 
current Pareto front found are known, the metric judges 
how well the solutions in such front are distributed11. This 
metric is defined in eq. (11). 
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d  is the mean of all solutions found so far, and n is the 
number of nondominated vectors. A value of zero for this 
metric indicates all members of the Pareto front currently 
available are equidistantly spaced. The metric addresses 
the second issue previously mentioned, namely good 
distribution of Pareto solutions. 

Locate a subswarm popi 

Rand>=pm? 

Fly Mutate

N 

Y 

Select collaborators 

Evaluate particles 

Update pi 

k=k+1 

k<maxgen? 
Y

Y 
N 

c=c+1 

End 

pop1

pop2

popn-1

……

popn

Construct context vectors 

Update archive A 

N

Calculate CD 

i=i+1 

N 

Fig. 1.  Flowchart and cooperation procedure of CEPSO 

i<n? 
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5.3. Results and discussion 

For the results presented in the following, the function 
evaluations needed by CEPSO are increased linearly with 
respect to the number of decision variables (D) and can be 
calculated by eq. (13). 

functionevaluations=psDmaxgenmaxcycle            (13) 

The main parameters of the experiments are set as 
follows: 

 ps=10(subswarm size) 
 pm=0.3(mutation probability) 
 c1=c2=2 
 =1.0~0.4 
 maxgen=1 
 maxcycle=50 

CEPSO is independently run 30 times for each 
benchmark function and the experimental results are 
summarized in Table 2~5 and Figure 3~18. 

 
Table 2. Statistical results for ZDT1 

SNA GD Spacing  

D max mean min max mean min max mean min 

250 42 40 37 3.00E-18 8.59E-19 0.00E+00 1.99E-02 8.49E-03 4.10E-04 

500 42 40 38 2.85E-18 6.77E-19 0.00E+00 1.52E-02 8.99E-03 2.63E-03 

750 42 40 38 2.92E-18 7.55E-19 0.00E+00 1.94E-02 8.69E-03 1.20E-03 

1000 42 40 38 2.85E-18 1.07E-18 0.00E+00 1.91E-02 8.24E-03 5.54E-04 

 
Table 3. Statistical results for ZDT2 

SNA GD Spacing  

D max mean min max mean min max mean min 

250 22 22 21 5.05E-18 1.68E-18 0.00E+00 4.96E-03 1.80E-03 2.48E-04 

500 22 22 22 5.05E-18 1.18E-18 0.00E+00 1.11E-02 1.83E-03 1.45E-04 

750 22 22 22 5.05E-18 5.89E-19 0.00E+00 6.37E-03 1.78E-03 9.04E-05 

1000 22 22 22 5.05E-18 5.89E-19 0.00E+00 4.58E-03 1.48E-03 7.73E-05 

 
Table 4. Statistical results for ZDT4 

SNA GD Spacing  

D max mean min max mean min max mean min 

250 42 40 38 2.78E-18 9.48E-19 0.00E+00 1.85E-02 8.56E-03 1.32E-03 

500 42 40 39 2.64E-18 6.69E-19 0.00E+00 1.56E-02 7.27E-03 1.16E-04 

750 42 40 38 2.85E-18 7.40E-19 0.00E+00 1.67E-02 9.13E-03 6.92E-04 

1000 42 39 38 3.89E-18 1.26E-18 0.00E+00 2.35E-02 9.73E-03 6.33E-04 

 
Table 5. Statistical results for ZDT6 

SNA GD Spacing  

D max mean min max mean min max mean min 

250 20 19 16 5.84E-18 1.18E-18 0.00E+00 2.73E-02 1.68E-02 1.07E-02 

500 19 18 16 6.94E-18 1.15E-18 0.00E+00 1.97E-02 1.50E-02 1.06E-02 

750 20 19 16 5.84E-18 4.01E-19 0.00E+00 3.68E-02 1.66E-02 1.11E-02 

1000 20 18 16 6.53E-18 1.22E-18 0.00E+00 2.96E-02 1.57E-02 1.21E-02 

 

 

 
Figure 2 Pareto front of ZDT1(D=1000) 

      
Figure 3 SNA of ZDT1 
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Figure 4 GD of ZDT1 Figure 8 GD of ZDT2 

      

 

      

Figure 10 Pareto front of ZDT4(D=1000) 

Figure 9 Spacing of ZDT2 

Figure 6 Pareto front of ZDT2(D=1000) 

Figure 5 Spacing of ZDT1 

Figure 11 SNA of ZDT4 Figure 7 SNA of ZDT2 
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Figure 16 GD of ZDT6 Figure 12 GD of ZDT4 

      
Figure 17 Spacing of ZDT6 Figure 13 Spacing of ZDT4 

 
The benchmark function ZDT1 and ZDT2 are relatively 

simple. Most MOPSOs can solve the two problems with 30 
decision variables (Tables and figures for 10~100D are 
omitted in this paper). Not only can CEPSO solve ZDT1 
and ZDT2 with 30 decision variables but also problems with 
up to 1000 decision variables. The simulation results for the 
high dimensional problems are given in Table 2~3 and 
Figure 2~9. As can be seen from these tables and figures, 
for the metric of SNA, there is a little change in number. 
The GD is negligibly tiny to 10-19, which means that PFknown 
is almost unlimitedly near PFtrue. On the other hand, the 
Spacing is stable and there is no difference among various 
dimensions, but the Spacing of ZDT1 is better than that of 
ZDT2.  

Figure 14 Pareto front of ZDT6(D=1000) 

The benchmark function ZDT4 and ZDT6 are more 
difficult than ZDT1 and ZDT2. Again, not only can CEPSO 
solve ZDT2 and ZDT4 with 30 decision variables but also 
solve problems with up to 1000 decision variables. The 
benchmark function ZDT4 has 219 local optima and most 
MOPSOs are easily trapped in them. The simulation results 
for the high dimensional problems are given in Table 4 and 
Figure 10~13. As can be seen, for the metric of SNA, there 
is some changes in number. However, the least is 38, which 
is a reasonable result. The GD is very tiny and is about 10-19. 
Most runs can obtain true Pareto front. On the other hand, 
the Spacing is stable and there is no difference among 
various dimensions. 

Figure 15 SNA of ZDT6 
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ZDT6 is also a difficult problem for its solutions are not 
uniformly distributed in its Pareto front. The simulation 
results for the high dimensional problems are given in Table 
5 and Figure 14~17. As can be seen, for the metric of SNA, 
there is little changes in number. In fact, ZDT2 and ZDT6 
have the same Pareto front. However, the metric of SNA for 
ZDT2 is better than ZDT6, while GD and Spacing are 
similar to ZDT2. 

These simulation results demonstrated that CEPSO can 
solve MOPs with up to 1000 decision variables but the 
numbers of function evaluations are only linear with respect 
to them, which means that CEPSO has good scalability for 
dealing with various MOPs. 

6. Conclusion and future works 

A scalable cooperative coevolution and -dominance based 
MOPSO is proposed and delineated. The experimental 
results show that CEPSO can not only solve MOPs with 
30~100 decision variables but also MOPs with up to 1000 
decision variables with fair scalability. Besides, function 
evaluation numbers are only linear with respect to the 
number of decision variables. Considering the fact that most 
MOPSOs can only solve MOPs with 10~30 decision 
variables and their performance will deteriorate when 
decision variables are 100 or above, the proposed approach 
is much promising. 

The future work will focus more on theoretical analysis 
and mathematical formulation and proof on one hand. On 
the other hand, we will attempt to reduce the run time to a 
certain magnitude. We will also try parallel implementation 
of CEPSO, which can reduce the run time other way around. 
And finally, we will apply CEPSO to practical applications, 
which will realize the true value of our research work. 
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