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Abstract

In this paper, we give a proof of the existence of stationary dark soliton solutions of the cubic
nonlinear Schrödinger equation with periodic inhomogeneous nonlinearity, together with an
analytical example of a dark soliton.

1 Introduction

Nonlinear Schrödinger (NLS) equations appear in a great array of contexts [1], for example in
semiconductor electronics [2, 3], optics in nonlinear media [4], photonics [5], plasmas [6], the
fundamentation of quantum mechanics [7], the dynamics of accelerators [8], the mean-field theory
of Bose-Einstein condensates [9] or in biomolecule dynamics [10]. In some of these fields and in
many others, the NLS equation appears as an asymptotic limitfor a slowly varying dispersive
wave envelope propagating a nonlinear medium [11].

The study of these equations has served as the catalyzer for the development of new ideas or
even mathematical concepts such as solitons [12] or singularities in EDPs [13, 14].

In the recent years there has been an increased interest in a variant of the standard nonlinear
Schrödinger equation which is the so called nonlinear Schrödinger equation with inhomogeous
nonlinearity, which is

iψt = −1
2

∆ψ +g(x) |ψ |2 ψ , (1.1)

ψ(x,0) = ψ0(x), (1.2)

with x∈ R
d. This equation arises in different physical contexts such as nonlinear optics and the

dynamics of Bose-Einstein condensates with Feschbach resonance management [15, 16, 17, 18,
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19, 20, 21, 22] and has received a considerable amount of attention in recent years because of the
possibilities for management and control offered by the coefficient functiong(x). Various aspects
of the dynamics of solitons in these contexts have been studied, such as the emission of solitons
[15, 16], the propagation of solitons when the space modulation of the nonlinearity is a random
[17], periodic [21], linear [18] or localized function [20]and the construction of localized solutions
by means of group-theoretical methods [31, 32].

In [26], the author, motivated by the study of the propagation of electromagnetic waves through
a multi-layered optical medium, proved the existence of twodifferent kinds of homoclinic solu-
tions to the origin in a Schrödinger equation with a nonlinear term. In [27], the authors proved
the existence of dark solitons for the cubic-quintic nonlinear Schrödinger equation with a periodic
potential. In this paper, we will prove the existence of darksolitons for Eq. (1.1) in one spatial
dimension for the case of theT-periodic symmetric nonlinear coefficientg(x) such as those which
arise when the nonlinear coefficient is managed through an optical lattice [17, 21, 23, 24, 25, 31].

From the mathematical point of view, the strategy of proof combines several techniques from
the classical theory of ODE’s (upper and lower solutions) and planar homeomorphisms (topologi-
cal degree and free homeomorphisms) in a novel way.

2 Existence of periodic solutions

In this document, we will study the cubic nonlinear Schrödinger equation with inhomogeneous
nonlinearity (INLSE) onR, i.e.

iψt = −1
2

ψxx+g(x) |ψ |2 ψ (2.1)

with g : R → R T-periodic and satisfying the following properties:

0 < gmin 6 g(x) 6 gmax (2.2a)

g(x) = g(−x). (2.2b)

The solitary wave solutions of (2.1) are given byψ(x, t) = eiλ t φ(x), whereφ(x) is a solution of

−1
2

φxx+ λφ +g(x)φ3 = 0. (2.3)

Such a solution is defined as a dark soliton if it verifies the asymptotic boundary conditions

φ(x)
φ±(x)

→ 1, x→±∞ (2.4)

where the functionsφ±(x) are sign definite,T-periodic, real solutions of Eq. (2.3).
Let us now analyze the range of values ofλ for which we can obtain the existence of nontrivial

solutions of Eq. (2.3).

Theorem 1. If λ > 0, the only bounded solution of Eq. (2.3) is the trivial one,φ = 0.
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Proof. Let φ be a nontrivial solution of Eq. (2.3). We can suppose that such a solution is positive
in an intervalI (on the contrary, we will take−φ ). Note that

φxx(x0) = 2λφ(x0)+2g(x0)φ3(x0) > 0 (2.5)

for all x0 ∈ I . If I is a bounded interval, a contradiction follows easily by simply integrating the
equation overI . On the other hand, ifI is an unbounded interval, we have a convex and bounded
function on an unbounded interval, which is impossible. �

Therefore, throughout this paper, we will takeλ < 0. Asgmin 6 g(x) 6 gmax, let us consider two
auxiliary autonomous equations:

−1
2

φ (1)
xx + λφ (1) +gmin(φ (1))3 = 0 (2.6)

−1
2

φ (2)
xx + λφ (2) +gmax(φ (2))3 = 0 (2.7)

These equations have two nontrivial equilibria

ξ (1) = ±
√

− λ
gmin

(2.8)

ξ (2) = ±
√

− λ
gmax

(2.9)

These are hyperbolic points (saddle points). We denoteξ (i) for the positive equilibria points, for
i = 1,2. We note thatξ (1) > ξ (2).

Before continuing, we will give the results of the second order differential equation. These
results are known [28], and they will be very helpful to us.

Let the following second order differential equation be

uxx = f (x,u) (2.10)

with f continuous with respect to both arguments andT-periodic inx.

Definition 1. (i) We say that ¯u : [a,+∞) → R is a lower solution of (2.10) if

ūxx > f (x, ū) (2.11)

for all x > a.
(ii) Similarly, u : [a,+∞) → R is an upper solution of (2.10) provided that

uxx < f (x,u) (2.12)

for all x > a.

We shall now prove the existence of aT-periodic and an unstable solution between both points
ξ (1) andξ (2).

Proposition 1. The pointsξ (1) andξ (2), which were previously calculated are, respectively, con-
stant upper and lower solutions of Eq (2.3). Moreover, an unstable periodic solution exists between
them.
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Proof. By using Eq. (2.6), we obtain:

−1
2

ξ (1)
xx + λξ (1) +g(x)(ξ (1))3 > λξ (1) +gmin(ξ (1))3 = 0 (2.13)

and, similarly, for the Eq. (2.7):

−1
2

ξ (2)
xx + λξ (2) +g(x)(ξ (2))3 < λξ (2) +gmax(ξ (2))3 = 0 (2.14)

Thus, by the latter definition,ξ (1) andξ (2) are upper and lower solutions, respectively. Following
[28], we obtain that aT-periodic solution exists between them. As the Brouwer index associated
to the Poincaré map is−1, (see, for example [29]), such a solution is unstable. �

We therefore have a positive andT-periodic solution of Eq. (2.3),φ+(x), satisfyingξ (2) 6

φ+(x) 6 ξ (1). Owing to the symmetry of the equation we also have a negativesolutionφ−(x) =
−φ+(x).

3 Existence of a dark soliton.

In this section, we prove the existence of a heteroclinic orbit connecting the periodic solutionsφ−
andφ+. This heteroclinic orbit may also be called a ”dark soliton”.

The following theorem is the key to our results. It was provedin [27] by using some ideas from
[30].

Theorem 2. Let bounded functions be u,v : [a,+∞) → R verifying

1. u(x) < v(x), ∀x > a

2. uxx(x) > f (x,u) and vxx(x) < f (x,v), ∀x > a.

A solutionφ(x) of (2.10) therefore exists such that

u(x) < φ(x) < v(x) (3.1)

If moreover, x exists such that

3. min
x∈[0,T ]

u∈[infx>a u(x),supx>a v(x)]

∂ f (x,u)
∂u > 0

then an T-periodic solutionρ(x) exists such that

lim
x→+∞

(|φ(x)−ρ(x)|+ |φx(x)−ρx(x)|) = 0 (3.2)

Moreover,ρ(x) is the unique T-periodic solution in the interval[infx>x0 u(x),supx>x0
v(x)]

We shall apply this theorem to our model. We have that

f (x,φ) = 2λφ(x)+2g(x)φ3(x). (3.3)

Moreover, asg is symmetric, it can considerx > 0 and extend the obtained solutionφ(x) as an
odd function tox < 0. The solutions of Eqs (2.6) and (2.7),φ (1) andφ (2), which are heteroclinic
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orbits joining−ξ (1) with ξ (1) and−ξ (2) with ξ (2), respectively, satisfy the conditions (1) and (2)
of Theorem 2, withv(x) = φ (1)(x) andu(x) = φ (2)(x). We thus have a bounded solutionφ(x) of
Eq. (2.3) such that

φ (2)(x) < φ(x) < φ (1)(x) (3.4)

Now that we have the above mentioned solutionφ(x) tends toφ+(x) andφ−(x), found in Proposi-
tion 1, asx→±∞. Hence, it must verify condition (3) of Theorem 2.

As a can be taken as being arbitrarily large, condition (3) is equivalent to

min
x∈[0,T ]

u∈[ξ (2) ,ξ (1)]

[2λ +6g(x)u2] > 0 (3.5)

This last inequality is equivalent to 2λ + 6gmin(ξ (2))2 > 0. Using Eq. (2.9) and the fact that
λ < 0, we obtain a connection betweengmin andgmax:

gmin >
gmax

3
. (3.6)

So, if relation (3.6) is verified, we obtain the existence of dark solitons in the nonlinear Schödinger
equation with inhomogeneous nonlinearity.

4 An example of a dark soliton

In this section, we shall consider an example of a dark (black) soliton from Eq. (2.3), which
illustrates the concepts introduced in the study. For this example, we shall take the periodic non-
linearity g(x) as

g(x) =
g0

(1+ α cos(ωx))3 (4.1)

with ω = 2
√

|λ | andg0, andα < 1 positive constants. To satisfy connection (3.6),α must fulfil
the constraintα < (31/3−1)/(31/3 +1).

The boundary conditionφ+ is

φ+ =
ω
2

√

(1−α2)(1+ α cosωx)
g0

(4.2)

andφ− = −φ+.
Following [31, 32], the solution of Eq. (2.3) with the boundary conditions (2.4) is

φ(x) =
ω
2

√

1−α2

g0

√
1+ α cosωxtanh

[

ω
2

√

1−α2

2
X(x)

]

(4.3)

with X(t) given by

tan
(ω

2

√

1−α2 X(x)
)

=

√

1−α
1+ α

tan
ωx
2

. (4.4)

This solution is depicted in Fig. 1.



70 J Belmonte-Beitia and P J Torres

+

-

0.8

0

-0.8

-20 0 20

Figure 1: [Color Online] . The dark solitonφ(x) (solid blue line) and the hyperbolic periodic
solutionsφ±(x) (red and green dashed line), for the parametersλ = −0.5, g0 = 1, α = 0.1.

5 Conclusions

In this paper, we have studied the existence of dark solitonsor heteroclinic orbits of the INLSE.
The method of proof begins with a standard separation of variables and relies on classical results of
the qualitative theory of ordinary differential equationsthat require some concepts such as upper
and lower solutions, topological degree and free homeomorphisms. As an example, we have
constructed an analytical black soliton-solution when thecoefficient of the nonlinear termg(x) is
periodic. Clearly, we are looking for a particular type of solutions. Of course, it is still possible to
wonder about the presence of dark solitons with a more complex structure and not coming from a
separation of variables. This is an interesting and difficult problem to be considered in the future.
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