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Abstract

In this note we describe the underlying principles — and pitfalls — of the process of
non-dimensionalising and scaling the equations that model the classical problem in
water waves. In particular, we introduce the two fundamental parameters (associated
with amplitude and with wave length) and show how they are used, independently, to
represent different approximations (with corresponding different interpretations and
applications). In addition, and most importantly, we analyse how these two parame-
ters play a role in the derivation of the Korteweg-de Vries (KdV) equation, which then
lead to predictions for the regions of physical space where solitons might be expected
to appear. In particular, we address the issue of whether KdV theory can be used
effectively to predict tsunamis. We argue that for tsunamis the propagation distances
are much too short for KdV dynamics to develop.

1 The governing equations

We shall assume that the relevant equations and boundary conditions are: the Euler equa-
tion, the equation for incompressible fluids, surface and bottom kinematic conditions, and
a dynamic condition — constant pressure — at the surface. All these together constitute
the classical water-wave problem; we note, in particular, that the fluid is inviscid (but
may be rotational) and that surface-tension effects are ignored. These assumptions reflect
physical reality. Indeed, incompressibilty is a physically reasonable assumption for water
[22]. Experimental evidence shows that the length scales associated with an adjustment
of the fluid velocity distribution due to laminar viscosity are long compared to typical
wavelengths encountered in sea waves [10]. Also, for sea waves that are not near the
breaking stage, the effects of friction due to turbulent mixing viscosity are also known to
be negligible [2], so that we may reasonably neglect viscosity altogether. The effects of
surface tension are negligible for wave lengths greater than a few centimeters [13, 22], the
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typical wave length of a wind-generated wave at sea being about 150m [2]. Therefore the
balance between gravity and the inertia of the system is the major factor governing the
evolution of sea waves from their initial profile.

We describe the governing equations in rectangular Cartesian coordinates, (x, y, z),
with the corresponding velocity field u ≡ (u, v,w), where each component depends on
x ≡ (x, y, z) (with z measured vertically upwards) and time, t; the pressure is P , ρ is the
(constant) density of the fluid, and g is the constant acceleration of gravity. The governing
equations are therefore [13]











Du

Dt
= − 1

ρ
∇P + F (where F ≡ (0, 0, −g)),

∇ · u = 0

(1.1)

and the corresponding boundary conditions are










P = Pa = constant,

w =
∂H

∂t
+ u

∂H

∂x
+ v

∂H

∂y
,

both on z = H(x, y, t), (1.2)

and

w = u
∂B

∂x
+ v

∂B

∂y
on z = B(x, y). (1.3)

(We have used the familiar material-derivative operator:
D

Dt
≡ ∂

∂t
+ u · ∇.) Here, H =

H(x, y, t) is the free surface of the fluid, and B = B(x, y) is the fixed, impermeable bed.
(It is possible to include time in the function describing the bottom topography; this then
enables, for example, the time evolution of marine quakes to be included in the model.)
The second boundary condition in (1.2), and the boundary condition (1.3), ensure that
both boundaries are interfaces: particles on these boundaries are confined to them at all
times. The first boundary condition in (1.2) permits the motion of the water to decouple
from that of the air above, with Pa representing the atmospheric pressure at the free
surface, taken to be constant.

The vorticity of the water flow,

ω = ∇× u,

is a measure of the local spin of a fluid element [22]. For irrotational flows this local spin
is completely absent:

ω =
(∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y

)

≡ 0. (1.4)

The idealization of irrotational flow is appropriate in the absence of non-uniform currents
in the water (e.g. field data shows that for waves entering a region of still water the
assumption of irrotational flow is realistic [22]), while vorticity is the hallmark of wave-
current interaction. Kelvin’s circulation theorem [13] guarantees that a water flow will
be irrotational if the motion is started from rest by conservative forces. Also, a flow
that is irrotational at some instant remains so at later times. Our presentation of the
non-dimensionalisation/scaling does allow for arbitrary vorticity in the flow field.
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2 Non-dimensionalisation of the governing equations

It is convenient to work with the perturbation of the pressure relative to the hydrostatic
pressure distribution, and then this perturbation measures the change in pressure as a
wave moves over the surface. Thus we introduce

P = Pa + ρg(h0 − z) + ρgh0p, (2.1)

where we have written p as a non-dimensional pressure and h0 is suitably chosen. Indeed,
we use h0 to denote some average or typical depth of the water, and λ to be some average
or typical wavelength of the wave; these two scale lengths are the basis for the generation
of a non-dimensional version of the equations. To complete this, we need a speed scale
and a time scale; to be consistent with our underlying aim (which is to produce a model
for surface waves), we use

√
gh0 as a speed scale and then λ/

√
gh0 as a time scale. The

process of non-dimensionalising then requires, for example, x 7→ λx, which is to be read as
x (the dimensional, physical variable) is replaced by λx, where x is now a non-dimensional
version of the original x. With this interpretation in mind, we transform according to

x 7→ λx, y 7→ λy, z 7→ h0z, t 7→ λ√
gh0

t, (2.2a)

u 7→
√

gh0 u, v 7→
√

gh0 v, w 7→ h0

√
gh0

λ
w, (2.2b)

with H = h0 + h and B = h0b. (2.2c)

Note that we must take care over the treatment of w, in order that the resulting non-
dimensionalisation is consistent with the equation of mass conservation (and, equivalently,
the existence of a stream function). So we see, for example, that in two spatial dimensions
(x and z, say), we have ux +wz = 0 and so we may write u = ψz and w = −ψx, (where ψ
is the stream function, and we have used subscript notation for partial derivatives) which
leads to the transformation introduced above. Also observe that we measure the surface
disturbance relative to z = h0 but we could elect to define this as z = 0 (or anything else
appropriate). Upon introducing the parameter

δ =
h0

λ
, (2.3)

the change of variables (2.2), which produces the non-dimensional version of the problem,
gives from equations (1.1)-(1.3) the set















Du

Dt
= − ∂p

∂x
,

Dv

Dt
= − ∂p

∂y
, δ2

Dw

Dt
= − ∂p

∂z
,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

(2.4)

where
D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+w

∂

∂z
,
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with

p =
h

h0

and w =
1

h0

(∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y

)

on z = 1 +
1

h0

h(x, y, t), (2.5)

and

w = u
∂b

∂x
+ v

∂b

∂y
on z = b(x, y). (2.6)

For irrotational flows the validity of the equations

δ2
∂w

∂y
− ∂v

∂z
= 0,

∂u

∂z
− δ2

∂w

∂x
= 0,

∂v

∂x
− ∂u

∂y
= 0, (2.7)

additionally has to be ensured. (Observe that the combination h/h0 is non-dimensional;
this will be suitably rewritten and simplified in the next section.) These equations and
boundary conditions are, of course, no different in their essential mathematical structure
from the original, “physical” equations. However, they now contain our first parameter,
δ, given by (2.3), which measures the relative size of the depth to wavelength. This
parameter is the long wave, or shallowness parameter, and its magnitude can be used to
identify different general types of wave problems — but more of this later.

3 Scaling

The main thrust of the principle and importance of scaling is driven by the role that the
amplitude of the wave plays in the formulation of the water-wave problem. Let the surface
wave be represented by z = 1 + ǫ η(x, y, t) in non-dimensional variables, so that h = a η,
where

ǫ =
a

h0

(3.1)

and a is a typical — perhaps maximum — amplitude of the wave (and so the choice of
ǫ, together with δ, controls the type of water-wave problem that is under consideration).
The surface boundary conditions then become

p = ǫ η and w = ǫ
(∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y

)

on z = 1 + ǫη,

w = u
∂b

∂x
+ v

∂b

∂y
on z = b(x, y),

which imply that w (at least near the surface) is proportional to ǫ, and that p is likewise.
Indeed, in almost all water-wave problems, p decreases with depth and w is maximal at the
free surface1, so we may use ǫ as a measure of the maximum vertical velocity component,

1See e.g. [13] for linear gravity water waves and [3, 4, 7] for nonlinear solutions to the governing
equations representing irrotational gravity water waves of permanent shape propagating at constant speed
at the free surface of water over a flat bed.
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and of the maximum perturbation pressure, and scale accordingly. Then, for consistency,
we require that u and v are similarly scaled; thus we now transform with

p 7→ ǫ p, w 7→ ǫw, (u, v) 7→ ǫ (u, v), (3.2)

so that, for example, the scaled w recovers the original (dimensional) w by constructing
ǫ (h0

√
gh0/λ)×(non-dimensional, scaled w). The full set of dimensionless, scaled equations

and boundary conditions (from equations (2.4)-(2.6)) then become















Du

Dt
= − ∂p

∂x
,

Dv

Dt
= − ∂p

∂y
, δ2

Dw

Dt
= − ∂p

∂z
,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

(3.3)

where

D

Dt
≡ ∂

∂t
+ ǫ

(

u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)

, (3.4)

with

p = η and w =
∂η

∂t
+ ǫ

(

u
∂η

∂x
+ v

∂η

∂y

)

on z = 1 + ǫ η(x, y, t), (3.5)

and

w = u
∂b

∂x
+ v

∂b

∂y
on z = b(x, y). (3.6)

The requirement of irrotational flow (1.4) supplements the equations (3.3)-(3.6), giving

δ2
∂w

∂y
− ∂v

∂z
= 0,

∂u

∂z
− δ2

∂w

∂x
= 0,

∂v

∂x
− ∂u

∂y
= 0. (3.7)

We shall assume that suitable initial data is available to generate any particular solutions
that might be implied by our various approximations to these equations. Satisfactory
local well-posedness (existence, uniqueness, and continuous dependence on initial data for
sufficently small time intervals) results for the governing equations for water-waves, given
a suitable initial wave profile and a suitable initial fluid velocity, were recently established
[8, 21].

4 Approximate equations

The problem described by equations (3.3)-(3.6) contains two parameters, and it is their
interpretation and role that we now examine. It is clear that these two represent the
contributions, in the governing equations, of the amplitude (ǫ) and the wavelength (δ) of
the wave under consideration; in each case, this is accomplished by measuring a typical
amplitude and a typical wavelength relative to the average (or typical) depth of the water.
It is immediately evident that the three quantities (amplitude, wavelength and depth) are
independent, and so it is misleading to associate any functional relation between them. (Of
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course, it is always possible to construct, in the laboratory, a wave maker that generates
waves with a specific relation between amplitude and wavelength — and even to allow
such a wave to move over a depth that is chosen to be a function of the amplitude, say
— but this would be, at the very least, perverse.) This observation has an important
consequence: no general meaning can be attached to statements such as δ2 = O(ǫ) or even
δ2 = o(ǫ) as ǫ→ 0, for to do so is to imply a relation between these parameters — albeit
it a weak one. We must therefore recognise that we are working with a problem that
contains two independent parameters, ǫ and δ, which must be treated as such (although
we can allow each to approach zero, provided that this is through independent processes).

The two most obvious approximate problems — and arguably the most useful in a
general discussion of water-wave properties — are to let either one or the other parameter
tend to zero, keeping the other fixed. (This is equivalent to treating the one that is fixed
as O(1) as the limit in the other proceeds.) Then, being specific, we have the two standard
approximations:

(a) ǫ→ 0 (δ fixed) — the linearised problem;

(b) δ → 0 (ǫ fixed) — the long-wave or shallow-water problem.

The first case, (a), represents the problem of waves of small amplitude, and so we obtain
a set of linear equations, to leading order (as ǫ→ 0):















∂u

∂t
= − ∂p

∂x
,

∂v

∂t
= − ∂p

∂y
, δ2

∂w

∂t
= − ∂p

∂z
,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

(4.1)

with

p = η and w =
∂η

∂t
on z = 1, (4.2)

and

w = u
∂b

∂x
+ v

∂b

∂y
on z = b(x, y). (4.3)

An important property of this set is that the evaluation at the surface now occurs on z = 1
(which is therefore known), yet the free surface — which is often the primary unknown
that we seek — still appears in the problem via the boundary conditions on this surface.
(The equivalent mapping from the unknown surface, z = 1 + ǫ η, to z = 1, exists in these
type of problems, essentially by virtue of the validity of a Taylor expansion about z = 1,
the underlying solution structure being polynomial in z.) The equations (4.1)-(4.3) then
describe the general linear water-wave problem, with dispersion (by virtue of the terms
generated by δ2) and over a general topography, z = b(x, y). Irrotational flows require the
additional equations

δ2
∂w

∂y
− ∂v

∂z
= 0,

∂u

∂z
− δ2

∂w

∂x
= 0,

∂v

∂x
− ∂u

∂y
= 0. (4.4)

The corresponding set for δ → 0, with ǫ fixed, is














Du

Dt
= − ∂p

∂x
,

Dv

Dt
= − ∂p

∂y
,

∂p

∂z
= 0,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

(4.5)
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where

D

Dt
≡ ∂

∂t
+ ǫ

(

u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)

, (4.6)

with

p = η and w =
∂η

∂t
+ ǫ

(

u
∂η

∂x
+ v

∂η

∂y

)

on z = 1 + ǫ η(x, y, t), (4.7)

and

w = u
∂b

∂x
+ v

∂b

∂y
on z = b(x, y). (4.8)

These constitute a general version of the shallow-water equations, the crucial simplification
being that the pressure perturbation p (due to the passage of the wave) is now independent
of z, resulting in the dispersive effects being absent here. Although this approximation,
based on neglecting higher-order terms in δ, must be justified — and this uses a different
basis as compared with that for the small amplitude approximation — this is readily avail-
able. Note that in the limit δ → 0, irrotational flows are characterized by the additional
equations

∂u

∂z
=
∂v

∂z
= 0,

∂v

∂x
− ∂u

∂y
= 0. (4.9)

The two sets, equations (4.1)-(4.3) and (4.5)-(4.8), are the leading-order problems for
either ǫ→ 0 or δ → 0, the other parameter being fixed, i.e. O(1), as the limit is imposed.
However, if both ǫ and δ are to be regarded as small (although under independent limiting
processes), then the leading-order equations become















∂u

∂t
= − ∂p

∂x
,

∂v

∂t
= − ∂p

∂y
,

∂p

∂z
= 0,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

(4.10)

with

p = η and w =
∂η

∂t
on z = 1, (4.11)

and

w = u
∂b

∂x
+ v

∂b

∂y
on z = b(x, y). (4.12)

For irrotational flows we further require

∂u

∂z
=
∂v

∂z
= 0,

∂v

∂x
− ∂u

∂y
= 0. (4.13)

These equations therefore constitute the leading-order approximation for small amplitude,
long waves (or shallow water), and these are consistent with both sets (4.1)-(4.3) and (4.5)-
(4.8); in the former, let δ → 0 and, in the latter, ǫ→ 0. It should be noted, however, that
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to extend this approximation by including higher-order terms, requires the introduction
of a double asymptotic expansion, of the form

q(x, y, z, t; ǫ, δ) =

∞
∑

n=0

∞
∑

m=0

ǫn δ2m qnm(x, y, z, t) for ǫ→ 0, δ → 0,

where q (and correspondingly qnm) stands for each of u, v, w and p; the expansion for
η follows the same form, but without the dependence on z. Terms at each order ǫn δ2m

are collected and solved sequentially; this formulation does not admit the combining of
terms from different orders e.g. n = 1, m = 0 with n = 0, m = 1 (a manoeuvre that
is sometimes attempted!). Furthermore, no meaning can be attached to requirements
such as “ǫ is smaller than δ2”, for to do so is to imply some (weak) functional relation
between ǫ and δ. Nevertheless, the apparent “balance” between ǫ and δ2 has excited a lot
of interest — particularly in the context of Korteweg-de Vries type approximations (see
[9, 11, 20, 24, 25, 26]) — and so we shall explore this aspect of the formulation.

5 Small-amplitude, nonlinear, long-wave approximation

The Korteweg-de Vries (KdV) equation — the archetypal equation of soliton theory —
first appeared in the context of water waves in 1895 [17] (although the soliton connection
did not arise for another 60 years or more), so to examine the position of this equation in
our presentation is altogether appropriate. The significant aspect of this equation is that
it describes the balance between the effects of nonlinearity and of dispersion. Now these
two properties are represented by the parameters ǫ and δ, respectively, but they appear
in the equations in the forms ǫ and δ2. This suggests — and a simple calculation confirms
this — that the relevant effects will be retained (to leading order) by including terms as far
as O(ǫ) and O(δ2). However, this does not imply that they will “balance” i.e. be of equal
importance in the resulting equation. In the early days of soliton theory, when attempts
to put the KdV equation in a fairly robust physical context were enthusiastically pursued,
it was thought that the choice “δ2 = O(ǫ)” was necessary (see e.g. [1] and the comments
in [26]) even though, as we have mentioned earlier, this can have no basis in a consistent
theory. Indeed, if this were to be the case, then observations of solitons would be very
rare! Fortunately, there is no requirement for this condition to hold for the KdV equation
to be the appropriate leading-order approximation to the description of the surface waves.
As we shall now demonstrate, there is a balance (somewhere and sometime) for any δ,
provided only that ǫ→ 0.

We consider a two-dimensional irrotational wave propagating in the positive x-direction
(so that v = 0 and there is no dependence on y); although it is possible to include the effects
of vorticity and of a variable depth — and so to derive equations which are generalisations
of the classical KdV equation (for examples of these problems see [14, 15, 16]) — but
for simplicity we shall consider only constant depth, b = 0, and irrotational flow. The
equations (3.3)-(3.7) then become

{

ut + ǫ (uux + wuz) = − px , δ2 {wt + ǫ (uwx + wwz)} = − pz,

ux + wz = 0 , uz − δ2wx = 0,
(5.1)
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with

p = η and w = ηt + ǫ uηx on z = 1 + ǫ η(x, t), (5.2)

and

w = 0 on z = 0. (5.3)

(We have used subscripts to denote partial derivatives.) The two parameters are evident
here, as is the obvious, simple special case where they are both the “same size”. Now,
these equations possess an important and far-reaching property: the parameter δ can be
scaled out, in favour of ǫ. This, in turn, leads to a precise prescription — in asymptotic
terms — of the region where the KdV equation will be valid (and so where solitons might
be expected to appear). We transform according to

x 7→ δ√
ǫ
x, z 7→ z, t 7→ δ√

ǫ
t, (5.4a)

p 7→ p, η 7→ η, u 7→ u, w 7→
√
ǫ

δ
w, (5.4b)

the last scaling being required to ensure the existence of a stream function. (We note, in
passing, that if we were to allow the mathematical solecism δ2 = O(ǫ), then this would be
no transformation at all.) The resulting equations, from (5.1)-(5.3), are

{

ut + ǫ (uux + wuz) = − px , ǫ {wt + ǫ (uwx + wwz)} = − pz,

ux + wz = 0 , uz − ǫwx = 0,
(5.5)

with

p = η and w = ηt + ǫ uηx on z = 1 + ǫ η(x, t), (5.6)

and

w = 0 on z = 0, (5.7)

which are the same as (5.1)-(5.3), but with δ2 replaced by ǫ, for arbitrary δ. These equa-
tions, (5.5)-(5.7), constitute the classical representation that leads to the KdV equation
to leading order as ǫ→ 0, at fixed δ, in the region where

τ = ǫ t = O(1) and ξ = x− t = O(1).

To see this, it is convenient first to simplify the system (5.5)-(5.7) by reducing the number
of unknown functions. The fourth equation in (5.5) ensures the existence of a function,
the velocity potential φ(x, z, t), such that

u = φx, ǫ w = φz.

Notice also that the first two equations in (5.5) merely express the fact that the expression

E(t) = φt +
ǫ

2
φ2

x +
1

2
φ2

z + p
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is, at any fixed t, constant throughout the fluid domain {(x, z) ∈ R
2 : 0 < z < 1+ǫ η(x, t)},

this being a version of the “pressure equation”; see [13]. Since φ is uniquely defined up
to an additive function of t, we can define φ such that E(t) = 0 for all t. The equations
(5.5)-(5.7) then become



























ǫ φxx + φzz = 0 in 0 < z < 1 + ǫ η(x, t),

φz = ǫ (ηt + ǫ φx ηx) on z = 1 + ǫ η(x, t),

φz = 0 on z = 0,

φt +
ǫ

2
φ2

x +
1

2
φ2

z + η = 0 on z = 1 + ǫ η(x, t).

(5.8)

Let us now expand φ and η in powers of ǫ: we assume that (5.8) has an asymptotic solution
of the form

φ(x, z, t) ∼
∞

∑

k=0

ǫk φk(x, z, t), η(x, t) ∼
∞
∑

k=0

ǫk ηk(x, t).

The leading order approximation (ǫ0) to (5.8) is simply



























∂2
z φ0 = 0 in 0 < z < 1,

∂z φ0 = 0 on z = 1,

∂z φ0 = 0 on z = 0,

∂t φ0 +
1

2
(∂z φ0)

2 + η0 = 0 on z = 1.

(5.9)

(We have used the notation e.g. ∂z for the partial derivative with respect to z.) The first
three equations in (5.9) imply that φ0 is independent of z so that

φ0(x, z, t) = F (x, t) (5.10)

for some function F . The last equation in (5.9) becomes

Ft + η0 = 0 on z = 1. (5.11)

At the next level of approximation (ǫ1) of (5.8) we obtain the system



























∂2
xφ0 + ∂2

zφ1 = 0 in 0 < y < 1,

∂zφ1 = ∂tη0 on z = 1,

∂zφ1 = 0 on z = 0,

∂tφ1 +
1

2
(∂xφ0)

2 + η1 + ∂zφ1 · ∂zφ0 = 0 on z = 1.

(5.12)

From (5.10), and the first and third equation in (5.12), we deduce that

∂zφ1 = − z Fxx for 0 ≤ z ≤ 1.

The second equation in (5.12) subsequently becomes

Fxx = − ∂t η0 on z = 1.
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Combined with (5.11) this yields the linear wave equation

∂2

x η0 − ∂2

t η0 = 0.

The general solution being η0(x, t) = f(x− t)+ f̃(x+ t), where the sign ∓ refers to a wave
of profile f (respectively f̃) translated to the right/left at constant unit speed; our choice
of following waves propagating in the positive x-direction leads us to

η0(x, t) = f(x− t). (5.13)

This suggests that in a particular neighborhood of the (x, t)-space it should be possible to
obtain precise information about the evolution of the water’s free surface. In order to do
this we look at the equations (5.8) in a frame of reference which is moving with a speed
of unity to the right. To gain insight, we also introduce the slow time scale τ = ǫ t. If

ξ = x− t, τ = ǫ t,

then x = ξ +
τ

ǫ
and t =

τ

ǫ
so that

∂x = ∂ξ
∂ξ

∂x
+ ∂τ

∂τ

∂x
= ∂ξ, ∂t = ∂ξ

∂ξ

∂t
+ ∂τ

∂τ

∂t
= −∂ξ + ǫ ∂τ .

The system (5.8) in (ξ, τ)-coordinates then becomes



























ǫ φξξ + φzz = 0 in 0 < z < 1 + ǫη,

φz = ǫ (−ηξ + ǫ ητ + ǫ φξ ηξ) on z = 1 + ǫη,

φz = 0 on z = 0,

ǫ ∂τφ− ∂ξ φ+
ǫ

2
φ2

ξ +
1

2
φ2

z + η = 0 on z = 1 + ǫ η.

(5.14)

Expanding φ and η in powers of ǫ,

φ(t, x, z) ∼
∞

∑

k=0

ǫk Φk(ξ, z, τ), η(t, x) ∼
∞

∑

k=0

ǫkHk(ξ, τ),

the leading order (ǫ0) approximation of (5.14) is



















∂2
zΦ0 = 0 in 0 < z < 1,

∂zΦ0 = 0 on z = 1,

∂zΦ0 = 0 on z = 0,

−∂ξΦ0 + 1

2
(∂zΦ0)

2 +H0 = 0 on z = 1.

(5.15)

From the first three equations in (5.15) we get ∂zΦ0 ≡ 0. Therefore

Φ0(x, z, τ) = θ(ξ, τ) in 0 ≤ z ≤ 1, (5.16)

for some function θ, and the last equation in (5.15) yields

H0(ξ, τ) = ∂ξ θ(ξ, τ) on z = 1. (5.17)
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At the next level of approximation (ǫ1) of (5.14) we get



















∂2
zΦ1 + ∂2

ξ Φ0 = 0 in 0 < z < 1,

∂zΦ1 = − ∂ξ H0 on z = 1,

∂zΦ1 = 0 on z = 0,

∂τ Φ0 + ∂zΦ0 · ∂zΦ1 + 1

2
(∂ξΦ0)

2 +H1 = 0 on z = 1.

(5.18)

From the first three equations in (5.18), in combination with (5.16), we deduce that

∂zΦ1(x, z, τ) = − z θξξ(ξ, τ) in 0 ≤ z ≤ 1.

For some function of integration α(ξ, τ), independent of z, we then get

Φ1(x, z, τ) = − 1

2
z2 θξξ(ξ, τ) + α(ξ, τ) in 0 ≤ z ≤ 1. (5.19)

From the last equation in (5.18) we now obtain

H1(ξ, τ) = −θτ (ξ, τ) −
1

2
θξξξ(ξ, τ) + αξ(ξ, τ) −

1

2
θ2

ξ (ξ, τ) (5.20)

in view of (5.16).
At the third level of approximation (ǫ2) to (5.14) we obtain



















∂2
zΦ2 + ∂2

ξ Φ1 = 0 in 0 < z < 1,

∂zΦ2 −H0 θξξ = − ∂ξ H1 + ∂τH0 + ∂ξΦ0 · ∂ξH0 on z = 1,

∂zΦ2 = 0 on z = 0,

∂τΦ1 − ∂ξΦ2 + ∂ξΦ0 · ∂ξΦ1 + 1

2
(∂zΦ1)

2 + ∂zΦ0 · ∂zΦ2 + H2 = 0 on z = 1.

(5.21)

The presence of the term (−H0 θξξ) in the second equation of (5.21) is the first time
in our expansion that a lower order term contributes towards the subsequent order of
approximation: by (5.19),

∂z Φ1 = − (1 + ǫH0) θξξ +O(ǫ2) on z = 1 + ǫ η.

From the first and third equation in (5.21), in combination with (5.19), we get

Φ2(x, z, τ) =
1

24
z4∂4

ξ θ(ξ, τ) −
1

2
z2 ∂2

ξ α(ξ, τ) + β(ξ, τ)

for some new function of integration β(ξ, τ). Using this, in combination with (5.17), (5.19)
and (5.20) in the second equation from (5.21), we obtain

1

3
θξξξξ + 3 θξθξξ + 2 θτξ = 0.

In view of (5.17), the above equation is precisely the Kortweg-de Vries (KdV) equation
for the surface wave η ∼ H0(ξ, τ):

2 ∂τH0 + 3H0 ∂ξH0 +
1

3
∂3

ξH0 = 0. (5.22)
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The balance between nonlinearity and dispersion, as embodied by the KdV equation,
therefore occurs in non-dimensional scaled variables in that region of time and space
defined by t = O(ǫ−1) and x = O(ǫ−1) (because x−t = O(1) here), respectively, and for any
δ. This region of space is therefore given, from (5.4), by x = O(δǫ−3/2) and t = O(δǫ−3/2)
in non-dimensional variables which, in original physical variables, can be estimated by the

distance x = O(λδǫ−3/2) and the corresponding time t = O(
λ√
gh0

δǫ−3/2) in accordance

to (2.2); these two provide estimates for the time and place where the balance occurs (for
any δ, but for ǫ→ 0). Of course, we assume that the times and distances involved here are
such that other physical properties do not intervene. If the wave travels for a significant
distance/time, then the effects of, for example, viscosity may have to be included, although
this property is represented by a new, independent, parameter, so the formal asymptotic
argument already described is unaltered.

It is instructive to present some estimates of the distance that waves will have to travel
before the nonlinear-dispersion balance, epitomised by the KdV equation, can occur. Thus
we compute values of

λδǫ−3/2 = h0

( a

h0

)

−
3

2

,

which is independent of λ, demonstrating that the scaling (5.4), is equivalent to using the
single scale length h0 for all non-dimensionalisations; the results are given in the table
below (but note that, in the cases when ǫ = a/h0 ≥ 1, the estimate is not applicable).

amplitude 0.1 m 0.5 m 1m 5m 10 m

depth 5 m 1.77 km 0.16 km 0.056 km N/A N/A

depth 10 m 10 km 0.89 km 0.32 km 0.028 km N/A

depth 100 m 3162 km 283 km 100 km 8.9 km 3.2 km

depth 1 km 106 km 89442 km 31622 km 2828 km 1000 km

depth 4 km 32 · 106 km 28 · 106 km 106 km 9 · 104 km 32 · 103 km

These figures demonstrate that, as John Scott Russell so eloquently described in his 1844
“Report on Waves” [23], a solitary wave of moderate amplitude in a river could evolve
and be followed on horseback — the distances needed for a KdV balance are no more
than a few kilometres. On the other hand, a wave generated over the deep ocean —
the devastating tsunami of December 2004, for example — would have to travel many
thousands of kilometres before the KdV balance would be achieved. The Boxing Day
Tsunami 2004 was generated on December 26, 2004, by a major earthquake with epicentre
located about 250 km off the west coast of the island of Sumatra [28]. The earthquake
caused a rupture of the ocean floor of approximate length 1200 km essentially to the
north-northwest; the slip along it acted as a line source generating tsunami waves which
propagated through the Indian Ocean to the west, and through the Andaman Basin to
the east [9]. In the basin of the Indian Ocean/Bay of Bengal the parameters a = 1m,
h0 = 4km and λ = 180 km are advocated in [9], based on accurate measurements of the
tsunami wave height over a distance of 1800 km provided by a radar altimeter on board
a satellite along a track traversing the Indian Ocean/Bay of Bengal from north to south,
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about 2 h after the main earthquake shock [18, 19]. These yield the values

δ =
h0

λ
≈ 2 · 10−2, ǫ =

a

h0

≈ 25 · 10−5,

and the apparent approximate balance “δ2 = O(ǫ)” is then taken in [9] to be indicative
for the suitability of KdV as a model for the evolution of these tsunami waves. (This
is in contrast to the Andaman Basin where the parameters a = 1m, h0 = 1km and
λ = 180 km do not characterize values of δ and ǫ considered to be appropriate for KdV
dynamics [9].) However, for these values of the parameters, our considerations show that
the distance required for a balance between nonlinearity and dispersion characteristic of the
KdV equation is in excess of 106 km in the Indian Ocean and of 3 ·104 km in the Andaman
Basin cf. the above table. If we allow the wave amplitude, based on estimates of the wave
just a few seconds after the earthquake and so applicable to the initial-value problem for
waves propagating in one direction only, to be closer to 1m (or even less, e.g. 0.6m as
advocated in [11]) the distances involved are even greater. This implies that it is quite
unrealistic to suppose that a balance of nonlinearity and dispersion can occur over oceans
that extend, at most, about 104 km: we must conclude that any tsunamis initiated in the
deep oceans are unlikely to be a manifestation of soliton theory. Our considerations rely
on the assumption that a large wave length λ is appropriate for tsunamis but, of course,
the initial data might contain a range of wavelengths so, perhaps, smaller wavelengths
might be relevant. However, a short time after the initial disturbance, out in the open
sea, the tsunami waves are generally of small amplitude (records show that 1m is a good
upper estimate) and therefore over moderate distances the dynamics of the tsunami is
likely to be captured by linear theory (whereas in coastal regions where the typical water
depth changes drastically, nonlinear theory is needed to describe the effects of the bottom
topography on the shape of the surface wave). The dispersion relation

c =

√

g λ

2π
tanh

(2π h0

λ

)

,

written in the original physical variables, gives the approximate propagation speed of
irrotational small amplitude waves [7, 13]. The monotonicity of c as a function of λ shows
that longer waves travel faster, with the long wave limit δ = h0/λ→ 0 providing the upper
bound c ≈

√
gh0. (For example, the average depth of the Indian Ocean being h0 = 4km,

taking g = 9.8m/s2, linear shallow water theory predicts that the 2004 Boxing Day
tsunami would propagate at approximate speed

√
gh0 ≈ 720 km/h, thus needing about

2 h 10min to travel the distance of about 1550 km from the epicentre of the earthquake
to the affected coast of Sri Lanka — which is about right [9, 28]. A similar calculation
for the Andaman Basin yields a speed of about 360 km/h, which is consistent with the
fact that the tsunami waves impacted upon the west coast of Thailand about 1 h after
the earthquake [9].) The dispersive effect in linear water waves is exemplified by the
dispersion relation, the fundamental feature being that waves of different wavelength (i.e.
different λ) travel at different speeds. Thus an initial profile which comprises a number
of different wavelengths will suitably evolve. Therefore, after initiation, provided that the
typical depth h0 remains roughly constant, we see that, in time, the longer waves move to
the front and the short wave lengths are then confined to the back of the tsunami profile.
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Thus, even if short wave lengths were relevant in the initial stage, after some time the
thrust of the tsunami problem is confined to long waves — a feature confirmed by the
satellite measurements of the 2004 Boxing Day tsunami mentioned before. Behind these
waves a dispersive effect might be noticeable but dispersion cannot be essential for the
leading waves in a tsunami. (Of course, the background state of the sea — prior to the
arrival of the tsunami — could contain short waves but such background states would
then most likely exhibit vorticity and the irrotational flow setting is no longer adequate.)
A more extensive discussion of the tsunamis, including a formulation and solution of the
problem which does not rest on soliton theory, can be found in [5] (see also the brief
discussion in [6]) .

6 Conclusion

This note has attempted to describe the background to a careful mathematical statement
of the classical water-wave problem, with the emphasis on the scaling issues that must
be addressed. In particular, we have seen that a systematic formulation of the problem
requires some care as to the choice of scales and, most especially, the appropriate choice of
variables relevant to the KdV equation. One of the important observations is the demon-
stration that a “KdV balance” is available for any value of the long-wave (shallowness)
parameter δ, requiring only that the waves be of small amplitude (in the sense that ǫ is
small). This, in turn, has led us to some estimates for the distances over which waves
will have to travel in order to achieve this balance and this is likely to be unattainable for
tsunami waves on a planet with the dimensions of the Earth.
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