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Abstract

We show that by deforming the Riemann-Hilbert (RH) formalism associated with
certain linear PDEs and using the so-called dressing method, it is possible to derive
in an algorithmic way nonlinear integrable versions of these equations.

In the usual Dressing Method, one first postulates a matrix RH problem and then
constructs dressing operators. Here we present an algorithmic construction of matrix
Riemann-Hilbert (RH) problems appropriate for the dressing method as opposed to
postulating them ad hoc. Furthermore, we introduce two mechanisms for the con-
struction of the relevant dressing operators: The first uses operators with the same
dispersive part, but with different decay at infinity, while the second uses pairs of
operators corresponding to different Lax pairs of the same linear equation. As an
application of our approach, we derive the NLS, derivative NLS, KdV, modified KdV
and sine-Gordon equations.

1 Introduction

We present an algorithmic approach for the derivation of nonlinear integrable equations in
141 dimensions. Namely, we show that a systematic deformation of the Riemann-Hilbert
(RH) problems associated with certain linear equations yields matrix RH problems which,
using the the so-called dressing method, lead to nonlinear integrable versions of these linear
PDEs. The RH problems associated with linear equations are obtained by performing the
spectral analysis of a pair of linear eigenvalue equations.

Our approach consists of the following steps: (i) Given a linear PDE we use the formu-
lation of [5] to construct a Lax pair of this PDE, i.e., a pair of compatible linear eigenvalue
equations. For example, let ¢(z,t) satisfy the Stokes equation,

Gt + qazz = 0. (1.1)

It was shown in [5] that this equation can be written as the compatibility condition of
the following pair of linear eigenvalue equations involving the scalar function p(z,t, k):
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o + ik = q, e+ k3 = —qup + ikqe + k2q. (1.2)

(i) Use this pair to derive a matric RH problem associated with the linear equation.
The spectral analysis of (1.2) yields the following scalar RH problem

. ) 1
ph(z, t, k) — pu (o, t,k) = e’m“kg’tpo(k), keR, u=0 (E) , (1.3)

where pg is some function of k with appropriate smoothness and decay and p*, i~ are
the limits of the function u(x,t, k) as k approaches the real axis.
Let Z be a 222 matrix

Z11 Zi2 >
Z = .
< Zo1 L2

Then, equation (1.3) can be rewritten in the following matrix form:

Zt =778z, t,k), keER, (1.4)
1
Z_>IQ+O<E>, k — oo, (1.5)

where Z T (x,t, k) and Z~(x,t, k) are matrix functions which are analytic in the upper and
lower half complex k—plane respectively. Also, the ”jump ” matrix Sj(z,t, k) is defined
by

ikz+ik3t
Sz, t, k) = < (1) ‘ po(k) ) (1.6)

We note that S; is triangular and satisfies det S;(z,t,k) = 1. The triangular form of
this matrix reflects the scalar nature of the relevant RH problem, while the unimodularity
is necessary for the unique solvability of this problem.

(iii) Deform this RH problem to obtain a new matrix RH problem which is appropriate
for the dressing method and apply this method. A RH problem is appropriate for the
dressing method when the relevant jump matrix is non-triangular and unimodular.

In the following, we propose a systematic deformation of the RH problem (1.4)-(1.5).
Namely, equation (1.1) in addition to (1.2), has also the Lax pair given by the equations
resulting from (1.2) after replacing k with —k. By performing the spectral analysis of this
Lax pair we obtain an equation of the form (1.4) with S;(z,t, k) replaced by ST (z,t, —k).
Using this RH problem and the RH problem (1.4)-(1.5) it is possible to construct RH
problems which can be associated with nonlinear versions of (1.1). Indeed, starting from
a RH problem of the form (1.4)-(1.5) where the matrix Sj(z,t, k) is replaced by

S(x,t k) = ST (x,t,—k)S)(z,t, k), (1.7)
and using the dressing method we obtain the following non-Abelian version of (1.2)

Zy +iklos, Z) = QZ, Z; + 4ik3[o3, Z) = HZ, (1.8)
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where o3 denotes the third Pauli matrix,

03:((1) 21> (1.9)

and the matrices ), H appearing in the right hand side of the above equations are of
certain order in k£ and involve the function ¢ and its derivatives.

Furthermore, we introduce two mechanisms for the construction of dressing operators.
These mechanisms yield nonlinear equations possessing the same linear part, but with
different nonlinear terms:

(i) We consider pairs of dressing operators with different decays at infinity. In partic-
ular, for the case of equation (1.1), we consider the following operators

Oy +ikos — Q, 0, + 4ik’o3 — H,
where o3 denotes the matrix commutator with o3
557 = (03, 7), (1.10)

and Z is a 222 matrix. If Q(k) is of order O(1) and H(k) is of order O(k?) the
compatibility of equations (1.8) yields the modified KdV equation

qt + Qrzz + 6(12% = 0’ (111)

while, if Q(k) is of order O(%) and H (k) is of order O(k) we find the well-known KdV
equation

4+ Qeaz + 69g; = 0. (1.12)

(ii) We consider dressing operators involving different powers of k. These operators cor-
respond to different Lax pairs of the same linear equation. For example, for the linearised
Schroedinger equation

Gt + qea = 0, (1.13)
one pair of associated dressing operators is given by
Oy + ikos, O + 2ik*5s. (1.14)

The compatibility of the relevant Lax pair yields the Nonlinear Schroedinger (NLS)
equation

i+ Gze — 2M\q[’q =0, A= +L (1.15)

Similarly, using the dressing operators which are obtained from (1.14) after letting
k — k2 we find the derivative NLS equation

ig: + ¢ue — A (lal’q), =0, A =+1. (1.16)

Assumptions
We assume that the initial conditions belong to the class of Schwartz functions denoted
by S(R).
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2 Lax pairs and the RH formalism for Linear Equations

A large class of linear and nonlinear integrable PDEs, including linear PDEs with con-
stant coefficients, can be written as the compatibility condition of two linear ordinary
differential equations (ODEs), the so-called Lax pair. It should be noted that Lax pairs
of linear equations, in contrast to Lax pairs of the nonlinear equations, can be obtained
algorithmically. In particular, it was shown in [5] that every linear PDE with constant
coefficients in two dimensions

possesses the Lax pair:
Wy +ikp =q, ke, (2.2)

P(0,0¢)pn =0, (2.3)

where p(x,t, k) is a scalar function. For example, using a variation of the above result
we find that the sine-Gordon equation

can be written as the compatibility condition of equation (2.2) with ¢ replaced by g,
and of the following equation

1 1
it + PR (2.5)

Indeed, equation (2.3) yields
fat + p= 0. (2.6)

Taking the derivative with respect to t of (2.2) where ¢ is replaced by ¢, and then
substituting the above equation in the resulting equation, we obtain (2.5).

For linear evolution equations, the Lax pair involves an ordinary differential equation
(ODE) in z, namely equation (2.2), as well as an ODE in ¢. Following [5], we derive two
families of Lax pairs for dispersive evolution equations. Indeed, let ¢(x,t) satisfy a general
dispersive evolution equation of order n,

where w(k) is a polynomial of order n,
w(k) =ap+artk+- +apnk”, ne NT, (2.8)

where {a;}T real. Then, this equation possesses the Lax pairs

(i)

po + ik = q(z,t),  pe+iwk)p = —X(z,t,k) (2.9)
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where

X(z,t,k) = — (w(k]i J_r ;“”(l)> , (2.10)
(ii)

po — ik = q(x,t), e +iw(k)p ==Y (x,t,k) (2.11)
where

Y(x,t, k) = (W) a, (2.12)

and [ = —i0,.

Equations (2.9) and (2.11) with k replaced by k™, where n is a positive integer, are also
Lax pairs of equation (2.7). Therefore, equation (2.7) possesses two families of Lax pairs
given by (2.9) and (2.11) where k is replaced by k™. Each value of n gives a particular
member of these families.

In [7], the Lax pair associated with (1.13) was used to solve the Cauchy problem
on the infinite line. In the process, a scalar RH problem associated with (1.13) was
obtained. Here, using the Lax pair formulation of linear PDEs, we derive in an algorithmic
way matriz Riemann-Hilbert problems associated with linear equations. As illustrative
examples, we derive Riemann-Hilbert problems associated with two equations of the form
(2.7), namely equations (1.1) and (1.13). We also show that a similar approach is possible
for other linear equations, which are not of the form (2.7), such as (2.4).

Proposition 2.1. Let Z(z,t,k) satisfy the matriz RH problem (1.4)-(1.5) where the
Yjump 7 matriz Sy(z,t,k) is given by

—ig(z,t,K)
Sy(z,t, k) = ( (1) i po(k) ) (2.13)

with
(i) ¢(x,t, k) = kx + k?t,
(ii) ¢(x,t, k) = kx + k3¢,
(iii) ¢(x,t,k) = ka + Lt.
Let po(k) be given by

(1)-(i)

po(k) = /00 ek qo () de, (2.14)
(iii)
po(k) = /_00 e* g1 (x)d. (2.15)

Then Zi15 is given by

0o —ip(z,t,K)
Zu(x,t,k):i/ e p0(K) 4y (2.16)

2mi J_ k—k
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Also, the complex-valued function q(x,t) satisfies

(i) the linearised Schroedinger equation (1.13) with q(z,0) = go(x) € S(R),

(7i) the Stokes equation (1.1) with q(z,0) = qo(x) € S(R),

(iii) the sine-Gordon equation (2.4) with q(x,0) = qo(z), ¢z(x,0) = q1(x) and qo(x) —
2mm, q1(z) € S(R) where m is an integer and z € (—o0,00), t € [0, 00).

Proof.

Equations (1.4)-(1.5) are equivalent to

zh = Zy, 78 = Zy, k e R, (2.17)
Z1+2 o Z;2 — 6—(zkm+zw(l€)t)p0(k)Zi’ ZSFQ - Z;Q _ e—(zkw+zw(k)t)p0(k)zi(2.18)
1
ZE. 75 -1, 75,75 — 0 (E) : (2.19)

The above jump and boundary conditions yield Z17 = Zog = 1 and Z9; = 0. Further-
more, equation (2.18a) and the Plemelj formulae [2] imply that Z;3 is given by (2.16).
The spectral analysis of (2.9) yields the RH problem

. 1
k) =t ) = e RO, ke R, w=0(1). (2.20)
This RH problem is identical with the RH problem satisfied by Zj2, namely equation
(2.18a). Therefore, Z15 = p and the result follows from the definition of Lax pairs.

QED

3 Non-Abelian Lax Pairs

The spectral analysis of (2.11) yields a RH problem of the form (1.4)-(1.5) where the
jump matrix is obtained from (2.13) after letting k — —k . It turns out that one can use a
combination of the matrices appearing in this RH problem and in the RH of Proposition
2.1 for the derivation of nonlinear versions of (2.7). Namely, the requirements of unimod-
ularity and non-triangularity imply that S;(k) should be replaced by one of the following:
ST(—k)Si(k), Si(k)SE(—k), SE(k)Si(—k),or Si(—k)ST (k).

Starting from RH problems of the form (1.4)-(1.5), where for convenience we have
replaced k& by 2k, and using the Dressing Method, we now construct non-abelian Lax
pairs.

Proposition 3.1. Let the 2x2 matriz valued function Z(z,t, k) satisfy the RH problem
(1.4)-(1.5) where the matriz Si(x,t, k) is replaced by S(z,t,k) defined by

1 efi(Qk:erSkBt)pO(k‘)
o | 3.1
(w,t,k) ( ez(2km+8k3t)r0(k) L+ po(k)ro(k) 7 ()

and po(k), ro(k) € H1(R).
Then Z(x,t, k) satisfies the following Lax pairs:

Zy + iklos, Z) = QZ, (3.2)
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Zy 4 4ik3[03, Z) = (K*Q2 + kQ1 + Qo) Z, (3.3)
where

Q(z,t) =ilos, (1], (3.4)

Qo = —4Cor — Q1C1, Q1= —4Cz, Q2 =14Q, (3.5)

and (1 and (s are the coefficients of the 1/k and 1/k? terms respectively, in the large
k asymptotic expansion of Z:

G G 1

Proof.
We construct dressing operators that satisfy the same RH problem as Z(z,t, k). We
observe that the matrix S(z,t,k) can be written in the form

_ (ke +ak3t)os (1 po(k) i(ka-+4k3t)os
S(z,t, k) =e <r0(k) 1+ po(k)ro(k) e )

The above result implies that the expressions
Zy +ikosZ, 7, + 4ik36s,

satisfy the RH problem (1.4)-(1.5) with S(xz,t,k) defined by (3.1). Indeed, it can be
verified directly that if Z(x,t, k) satisfies (1.4), then

(0 +iko3)Z = [(0, +ikT3)Z ™| S(w,t, k), (3.7)

(0 + 4ik363) 2" = {(0; + 4ik>63)Z}S (2, t, k). (3.8)

We now concentrate on the construction of the z—operator. We first note that if Q(z,t)
is an arbitrary 2 x 2 matrix, then

Q7T = (QRQZ7)S.
From the above it follows that the two combinations
(0x +ikos)Z, (QZ),

satisfy the the same jump condition (1.4) as the matrix Z.
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The basic idea of the Dressing Method is to choose the matrix Q(x,t) in such a way so
that the combination

(0 +ikos — Q)Z (3.9)
vanishes as kK — oo. Then, assuming that the Riemann-Hilbert problem (1.4)-(1.5) has
a unique solution, it follows that this combination vanishes identically. The assumption
that the combination (3.9) vanishes as k — oo, fixes @) uniquely. Indeed, let the operator
M be defined by

MZ = (0, + ikos — Q)Z. (3.10)

Expanding Z(z,t, k) in the form (3.6) and substituting this expansion into equation
(3.10) we find

1
MZZZ‘agQ—Q—I—O(E) , k — o0 (3.11)

Thus, if Q(z,t) is defined by (3.4), then MZ ~ O(3), hence equation (3.2) follows.
Let NZ be the t—operator. Since the expression Z; + 4ik®632Z ~ O(k?), we consider
the following combination,

NZ = (9 + 4ik353 — k*Qy — kQ1 — Qo) Z. (3.12)

Substituting (3.6) into the above equation and demanding that NZ — 0 as k — oo, we
find (3.5¢) as well as

Qo = 4i[o3, (3] — Q1G1 — 4Q¢y, (3.13)

Q1 = 4i[o3, (] — 4QG. (3.14)

The large k— expansion of (3.2) implies

Gz +ilos, ] — QG = 0. (3.15)
and
ilos, (3] = QG2 — Caa- (3.16)

Comparing equations (3.5b) and (3.15), we find (3.5a).
Also, equations (3.13) and (3.16) yield (3.5).

QED
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In analogy with the above Proposition, starting from the matrix RH problem associ-
ated with the linearised Schroedinger (1.13) and sine-Gordon (2.4) equations, we find the
following;:

Proposition 3.2. Let the 222 matriz valued function Z(z,t, k) satisfy the RH problem
(1.4)-(1.5) where the matriz Si(x,t, k) is replaced by S(z,t,k) defined by

1 efi(Qkx+4k2t)p0(k)
s | 3.17
(z,t, k) ( eGR4k 0 (k) 1+ po(k)ro (k) 7 o

and po(k), ro(k) € H1(R).
Then Z(x,t, k) satisfies the following Laz pair:

Zy + iklos, Z) = QZ, (3.18)

Zy 4 2ik*[03, Z) = (kA + B) Z, (3.19)

where @ is defined by (3.4),

A=2Q, B =2i[os,((x,t)] —2Q¢ (z,1), (3.20)

and (1 and (o are the coefficients of the 1/k,and 1/k? terms in (3.6).

Proposition 3.3. Let the 222 matriz valued function Z(xz,t,k) satisfy the RH problem
(1.4)-(1.5) where the matriz Si(x,t, k) is replaced by S(z,t,k) defined by

. 1
Stk = 1. (k) ) (3.21)
ez(zkarﬁt)ro(k) 1+ po(k)ro(k)

and po(k), ro(k) € H1(R).
Then Z(x,t, k) satisfies the following Laz pair:

Zo +iklos, 7] = QZ, (3.22)
1 1~
Zy + — Z|=—PZ j=1,2 .2
t+ 4k[035 ] 4k,' 9 J ) “y (3 3)

where @ is defined by (3.4a),
P = —4icy,, (3.24)

and (1 1is the coefficient of the 1/k term in (3.6).

It is also possible to consider an operator M7, involving the same combination 9, + ko3
as M but with a faster decay at infinity, namely M1Z = O (k—lg) as k — oo. The relevant
results for the Stokes equation are obtained in the following Proposition.
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Proposition 3.4. Let the 222 matriz valued function Z(x,t, k) satisfy the RH problem
(1.4)-(1.5) where the matriz Si(x,t, k) is replaced by (3.1). Then Z(xz,t,k) satisfies the
following Lax pair:

Zy + iklos, Z) = %@Z, (3.25)

Zy + 4ikPlos, Z] = (k@l + Qo+ %@},) Z, (3.26)
where

Q(z,t) = C1z +i[o3, (2, (3.27)

Q1(z,t) = 4i53Ca(x, 1),  Qa(x,t) = —Q1(x,t)C1(x, 1) + 4id3Ca(x, 1), (3.28)

Q3(x,t) = 4i55C (2, t) + Cue(z, t) — Qu(a, ) Calx, t) — Qala, t)Cy (x,1), (3.29)

and (1, Ca, (3, and (4 are the coefficients of the 1/k, 1/k?, 1/k® and 1/k* terms
respectively, in (3.6).

Proof.

Let the operator M; be defined by

1~
M Z = (8@, + ikog — EQ> Z. (3.30)
Substituting the expansion (3.6) in the above equation we obtain
k2

MiZ = ilo3, i) + % {Ga+ilos, ] - Q) +0 (i) . k— oo, (3.31)

Thus, if Q is given by (3.27) then Z(z,t, k) satisfies (3.25). Furthermore, instead of the
operator IN, we now consider the operator N; defined by

N, Z = (at + 4ikP65 — kQ1 — Qo — %i@},) Z. (3.32)

It is straightforward to prove that if the matrices éj, j=1,...,3, are given by (3.28)-
(3.29) then Z(z,t, k) satisfies (3.26).

QED
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The linearised Schroedinger equation (1.13) possesses the Lax pair
e+ ik2n = q(x,t), e+ iktu =ig, + K2q. (3.33)
Similarly to the previous cases, this Lax pair implies the following dressing operators
Oy +ik?> — kP — R, O, + 2ik* — 3Py — k*P, — kP, — P,. (3.34)

Using these operators we obtain the following result:

Proposition 3.5 Let the 222 matriz valued function Z(x,t, k) satisfy the RH problem
(1.4)-(1.5) where the matriz Si(xz,t,k) is replaced by (3.17). Then Z(xz,t,k) satisfies the
following Lax pair:

Zy +ik*[03,Z) = (kP + R)Z, (3.35)

Zy + 2ik*o3, Z) = (K*Py — k*Py — kP, — Py) Z, (3.36)
where Q is defined by (3.4),

P = i[03’ Cl]a R = i[03’ CQ(‘T’t)] - P<1($,t), (337)

Po = 2C12C1 — 202z, Pr = —2C1, P2 = 2R, P3 =2P. (3.38)

and (1 and (o are the coefficients of the 1/k,and 1/k? terms in (3.6).

4 Derivation of Nonlinear Dispersive Equations

The compatibility condition of each of the Lax pairs obtained in the previous section yields
a corresponding pair of nonlinear dispersive PDEs for ¢(x,t) and r(z,t). These equations
are given in the following Propositions.

Proposition 3.6. Let ¢ = 2i(¢1)12, 7 = —2i(¢1)21,a1 = (C1)11,01 = (C1)22, B2 = (C2)12
and vo = ((2)21 where (1 and (y is the coefficient of the % and k;_12 terms in the asymptotic
expansion (3.6). Let the function Z(x,t,k) satisfy equations (3.2) and (3.3). Then q,

r,ay,01, 82 and o satisfy the following system of nonlinear dispersive equations:

G + Quzz — 2(¢%7)z — 4ig*r(ar + 61) + 8q(—rP2 + q2) =0, (4.1)
T+ Toze — 2(qr?)s + digri(ar + 61) — 8r(—1B2 + gy2) = 0. (4.2)
Proof.

The diagonal part of (3.15) yields

a1y = 2ib1v1, O1p = —2iB1M1- (4.3)
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The above equation and (3.5b) yield

2i11 Pie )
=(—4 . . 4.4
Q=4 ( Mz —2ifm (44)
Using (3.5a) and (4.4) we find
—2if1v1a1 — B + aze  —2i0771 — P01 + Pox )
=(—4 ) ) . 4.5
Qo=(=4) < —Y1za1 + 20017 4 You —MzP1 + 2iB17161 + b2z (45)

The off diagonal and diagonal parts of (3.14) and (3.16) respectively, yield

ae = 2172, 0oz = —2if21, (4.6)

Biz = 2i161 — 2ifa, Yz = —2ima1 + 2ive. (4.7)

Taking the derivative of (4.7) with respect to x and substituting the resulting equation
as well as the above two equations into (4.5), we find

Q0 = ( 8iBivi(ar + 61) — 8i(Bey1 + Bivz) 16i83y1 — 2iB1us ) (4.8)
0 —16i317 + 2iV1zs —8if1yi(ar + 61) + 8i(Bovi + Piy2) )~

Substituting Z = zeilkatdkt)os ngo equations (3.2) and (3.3) and demanding that
2tz = 2 We find

Qi + [~ikos + Q, —4ik’ 03 + k*Q2 + kQ1 + Qo] — K Qor — kQ1z — Qo = 0. (4.9)
The O(1) terms cancel iff

Qi +[Q, Qo] — Qoz = 0. (4.10)
Then, the (12) and (21) element of equation (4.10) yield equations (4.1)-(4.2).

QED

For the cases of linearised Schroedinger and sine-Gordon equations we obtain the fol-
lowing results:

Proposition 3.7. Let q and r be defined as in Proposition 3.6. Let the function
Z(x,t, k) satisfy equations (3.18) and (3.19).

Then q, and r satisfy the following system of nonlinear dispersive equations:

G — i1Qzp + 2ig%r = 0, (4.11)

T+ gy — 2igr? = 0. (4.12)

Proof.
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Equations (3.15) and (3.20b) imply
B = —21,. (4.13)

Let (4 be defined by

ar B
= . 4.14
“ ( n o8 ) 1)
Equation (3.4) implies that @ is given by
(0 %6,
0= (%, ) .

Thus, equations (4.3) and (4.13) give

—4ihm =201 > , ,
B= . = —43 03 — 1Q403. 4.16
( 2% 4ifim bimos = iQs0s (4.16)

Substituting Z = ze'k=+2k*)9s into equations (3.18) and (3.19) as well as substituting
in the latter equation the matrix B(x,t) by the expression (4.16) and demanding that
Ztr = Zy+ We obtain an equation involving terms of different powers of k£ as well as ) and
its derivatives.The O(1) terms of this equation cancel iff

Qt + [Q, —iQ%03 — iQu03] + i (Q%) 03 + iQue03 = 0. (4.17)

Taking into consideration (4.15) the (12) and (21) element of equation (4.17) yield the
system (4.11)-(4.12).

QED

Proposition 3.8. Let q, r, a1 and &1 be defined as in Proposition 3.6 Let the function
Z(x,t, k) satisfy equations (3.22) and (3.23). Then p,q, v and s satisfy the following
system of dispersive equations:

gt = —O1zts 20015t = @7 + 7¢q- (4.18)

Proof.
Substituting the asymptotic expansion

Z = Zo(x,t) + kZy(x,t) + O(k?), k — 0. (4.19)
into (3.23) we find

P = —lo3, Zo)1Z; . (4.20)

Letting

(A Bo
ZO_(FO A0>’
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equation (4.20) implies

5 BoI'y —BoAg
P=2 ( A pre ) (4.21)

Comparing equations (3.4) and (3.24) we find the following equations

BOFO = —22‘a1t, BQFQ = 2’i(51t, (422)

BoAo = qt, ToAg=rt. (4.23)

The matrix P becomes

5 —2iayy —q

P=2 ( " 9y, ) . (4.24)
Substituting

7 = Z(gi(lw"—’—ﬁ)o—3 (425)

into the Lax pair (3.18)-(3.23) and taking into consideration the compatibility condition
zte = Zyt we find an equation involving terms with powers of £ and the matrices @, Q.
The O ( %) term of this equation is

This equation can be rewritten as

—2ian —q —qr — Tt 2iq (01 — ar) 0 ¢
. . =0. (4.27
( Tt —2i01¢ >m + < 2ir(ayy — 01e) qr +1q Lo (4.27)
Therefore the (11) and (22) terms of the above equation yield equations (4.18).
QED

Proposition 3.9. Let (2,72,a1 and d1 be defined as in Proposition 3.6. Let the
function Z(x,t,k) satisfy equations (3.25) and (3.26). Then [33,72,a1 and 61 satisfy the
following system of nonlinear dispersive equations:

Z‘ﬁQt + 162zzz - 4ﬁ2a}(a1z - 512:) - 252(a1z - 51z)z = 07 (428)
Y2t + 1Yozar — 4'72z(a1z - 51&:) - 272(a1z - 51&0)2: =0. (429)
Proof.

Equation (3.28) implies

Q1 = 4i< (1272 gﬂz > : (4.30)
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The large k— expansion of (3.25) implies

i[O‘g, Cl] = O, (431)

Cox + i3, G = QC1, (4.32)

ilos, Ca] = QG2 — Caa (4.33)
Comparing equations (3.28b) and (4.32) we find:

Q2 = 4QC — 4¢or — Q11 (4.34)
Let (5 be defined by

az [
= . 4.35

(2 2) -
Then equations (3.27) and (4.31) yield

~ [ aiz 2if32

Q= ( o B ) (4.36)
Equations (4.30), (4.31) and (4.36) imply

~. [ aizaq 2i3201 ~ . (0 8if3201

Q= ("5 n ) @0= (Y 0 437

The diagonal part of (4.32) yields
Q2p = 1201, 02 = 01201, (4.38)

Equation (4.34) after using (4.38) yields an expression for @2 :

Q2= (—4) < 321 gh > . (4.39)

In order to find an expression for Q3 we start from equation (3.29). Using (4.30) and
(4.39) we find

016y = 8i ( Boye (202 >  Os61 = (—4) ( 0 g2z51 > (4.40)

—Y202  —[272 Yoz Ol

Then equation (3.29) yields

05 = ( —8iB2y2 + a1t —8i 3202 + 432,01 + 8if4 > (4.41)
8ivaas + 4vyoza1 — 8iys  8ifaye + o1y ' )

Equation (4.33) taking into consideration (4.36), yields

2004 = a1.02 + 2if202 — Bse, (4.42)
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=214 = 01272 — 217202 — Y3z (4.43)
Then
~ —8iB2y2 + a1t 432,01 + 4a1,82 — 483, )
= . 4.44
s (4wwq+wuw—4wzswma+&t (4.44)

Equation (4.32) implies

2i3 = — [z + 215201, (4.45)

—22"}/3 = —Y2zxr — 2’L"}/2a1. (446)
Substituting the above into (4.44), we obtain the following expression for @3 :
~ _Siﬁ2’72 + at 4ﬁ2 (alz - 51:)3) - Qiﬂsz >
= . . 4.47
@s ( 472(612 — a1z) + 2iY200  8if2y2 + 01 (4.47)

Substituting Z = zet (ke + R0 ingo the eigenvalue equations (3.25)-(3.26) and demanding
that these equations are compatible we find

1~ ~ ~ 1~ , 1~ ~ x5 1

7@t —kQuo — Q20 — 3 Q3p + [~thos + 1Q, —4ik’ o3+ kQ1 + Q2 + 7@l =0. (4.48)
The O (%) term of the above equation is

Qi +[Q, Q2] — Qsx = 0. (4.49)
The (12) and (21) terms of equation (4.49) yields the system (4.28)-(4.29).

QED

Proposition 3.10. Let q and r be defined as in Proposition 3.6. Let the function
Z(x,t, k) satisfy equations (3.35) and (3.36).
Then q, and 7 satisfy the following system of nonlinear dispersive equations:

G — iGee +i(q*r), = 0, (4.50)
re+ irpe — i(qr?)e = 0. (4.51)
Proof.

Equations (3.37) yield

(0 213 | —2ifm 2i(f2 — (161)
r= < —2iv2 0 > M= ( —2i(y2 —ma1) 2ifim ) ’ (4.52)
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Also, equation (3.38¢c) implies

P = ( 1201 + PBizy1 — a2z 1281 + B1201 — Pox ) (4.53)
0121 + V1201 — Y2z 01201 + V121 — 022 )

Following precisely analogous steps to the previous cases we obtain the following equa-
tions

ilog, Po) = —2B, + [A, —2(1a), (4.54)

Py + 2150 + 2[P, Po) + [R, —(10] = 0. (4.55)

The first of the above equations implies
a1 = 01. (4.56)
Then, the (12) and (21) terms of (4.55) yield the system (4.50)-(4.51).
QED

5 Nonlinear Integrable Equations

Considering appropriate reductions of the above systems of nonlinear dispersive equations
yields single nonlinear integrable versions of the linear PDEs considered in Proposition
2.1.

Modified KdV. The system (4.1)-(4.2) admits the reduction r = —¢q. Then, equations
(4.3) and (4.7) yield a; = —d; and 2 = —72 and this system reduces to the modified KdV
equation (1.11).

Nonlinear Schroedinger. The reduction r = Ag, A = %1, implies that the system
(4.11)-(4.12) reduces to the NLS equation (1.15) as well as to the complex conjugate of
this equation.

Derivative NLS. The reduction r = \g, A = £1, reduces the system (4.50)-(4.51) to
derivative NLS (1.16) and its complex conjugate.

sine-Gordon. Letting

q:r:% (5.1)

in equation (4.23) it follows that

A()BO — F()AO =0. (52)
The choice
Ag = Ag = cos g, By =Ty =sin g, (5.3)

satisfies equation (5.2). Then, equation (4.22) yields

2iay; = —2idy; = —sin? g (5.4)
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Using (5.1) and (5.4), equations (4.18) reduce to the nonlinear sine-Gordon equation:

Jor =sin f. (5.5)
KdV. Substituting the expansion,

Z=2Zo+kZy +O(*), k—0, (5.6)
into (3.25) we find

QZy = 0. (5.7)

The above equation implies that one should restrict the form of either @ or Z. Re-
stricting Z can lead to inconsistencies, therefore we require the matrix () to be singular,
namely det Q = 0, or equivalently

a12012 = 46272 (5.8)

The O (kl—g) term of equation (4.48) yields

[Q,Qs] = 0. (5.9)

A simple algebraic manipulation of this equation implies

P2 = 2. (5.10)

Then the reduction

q

— 11
2, (5.11)

a1y = =01z =
and equation (5.8) imply that the system (4.28)-(4.29) reduces to the Korteweg-de-Vries
equation (1.12).

6 Conclusions

The modelling of a variety of important physical phenomena requires the formulation of
nonlinear partial differential equations (PDEs). There exists a particular class of such
equations which are called integrable, and which possess two distinctive characteristics:
first, they appear in many areas of mathematics and physics and secondly, they can be
investigated analytically using the inverse scattering method. Regarding the first char-
acteristic we note that physical applications of integrable equations include ion-acoustic,
electromagnetic, electrostatic, ionospheric, and water waves, stimulated Raman scattering,
biology, relativity, and quantum field theory (see for example [1]). This reflects the fact
these equations express a certain physical coherence, which is present in a variety of phys-
ical phenomena. Calogero and Eckhaus have shown [3],[4] that the ubiquitous occurence
of integrable PDEs is due to the fact that they can be obtained from very large classes
of nonlinear evolution equations through a limiting procedure involving rescalings and an
appropriate asymptotic expansion. Regarding the inverse scattering method we note that
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for equations in 141 dimensions this method is based on the spectral analysis of an eigen-
value equation which in turn requires the use of the Riemann-Hilbert (RH) formalism.
The generalisation of this formalism needed for the investigation of initial-boundary value
problems, for the nonlinear Schroedinger, KdV, modified KdV and sine-Gordon equations
has been developed in [8], [14], [9], [12], [11] and [13].

The Dressing Method is a general method for the derivation of both nonlinear integrable
PDEs and large classes of their solutions. This method was introduced by Zakharov and
Shabat in [17]. The first version of this method was based on a Gelfand-Levitan-Marchenko
(GLM) type equation, while its second version [18] was based on the RH formalism. In the
second version, one first postulates a matrix RH problem and then constructs appropriate
dressing operators.

We present an approach for the systematic derivation of nonlinear integrable partial dif-
ferential equations in 1+1 dimensions. Starting from model linear equations and using the
Dressing Method, we first derive systems of nonlinear dispersive PDEs. Then, considering
appropriate reductions of these systems we obtain nonlinear integrable equations.

We show how one can construct in an algorithmic way matrix Riemann-Hilbert (RH)
problems appropriate for the Dressing Method as opposed to postulating them ad hoc.
Furthermore, we introduce two mechanisms for the construction of the relevant dressing
operators. Each of these mechanisms yields different nonlinearities. In particular, the
first mechanism uses operators with the same dispersive part, but with different decay at
infinity. As an illustrative example of this mechanism, we start with the Stokes equation
and obtain the KdV and modified KdV equations. The second mechanism uses pairs of
operators corresponding to different Lax pairs of the same linear equation. We demonstrate
this mechanism using the example of the linearised Schroedinger equation from which we
derive the NLS and Derivative NLS equations.

Our approach can be applied to a large class of linear equations of physical significance,
including equations of the form (2.7). It is expected that some of the resulting nonlinear
integrable equations will also be of physical significance.

A preliminary version of this work appeared in [10].
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