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Abstract

We show that by deforming the Riemann-Hilbert (RH) formalism associated with
certain linear PDEs and using the so-called dressing method, it is possible to derive
in an algorithmic way nonlinear integrable versions of these equations.

In the usual Dressing Method, one first postulates a matrix RH problem and then
constructs dressing operators. Here we present an algorithmic construction of matrix
Riemann-Hilbert (RH) problems appropriate for the dressing method as opposed to
postulating them ad hoc. Furthermore, we introduce two mechanisms for the con-
struction of the relevant dressing operators: The first uses operators with the same
dispersive part, but with different decay at infinity, while the second uses pairs of
operators corresponding to different Lax pairs of the same linear equation. As an
application of our approach, we derive the NLS, derivative NLS, KdV, modified KdV
and sine-Gordon equations.

1 Introduction

We present an algorithmic approach for the derivation of nonlinear integrable equations in
1+1 dimensions. Namely, we show that a systematic deformation of the Riemann-Hilbert
(RH) problems associated with certain linear equations yields matrix RH problems which,
using the the so-called dressing method, lead to nonlinear integrable versions of these linear
PDEs. The RH problems associated with linear equations are obtained by performing the
spectral analysis of a pair of linear eigenvalue equations.

Our approach consists of the following steps: (i) Given a linear PDE we use the formu-
lation of [5] to construct a Lax pair of this PDE, i.e., a pair of compatible linear eigenvalue
equations. For example, let q(x, t) satisfy the Stokes equation,

qt + qxxx = 0. (1.1)

It was shown in [5] that this equation can be written as the compatibility condition of
the following pair of linear eigenvalue equations involving the scalar function µ(x, t, k):
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µx + ikµ = q, µt + ik3µ = −qxx + ikqx + k2q. (1.2)

(ii) Use this pair to derive a matrix RH problem associated with the linear equation.
The spectral analysis of (1.2) yields the following scalar RH problem

µ+(x, t, k) − µ−(x, t, k) = eikx+ik3tρ0(k), k ∈ R, µ = O

(
1

k

)
, (1.3)

where ρ0 is some function of k with appropriate smoothness and decay and µ+, µ− are
the limits of the function µ(x, t, k) as k approaches the real axis.

Let Z be a 2x2 matrix

Z =

(
Z11 Z12

Z21 Z22

)
.

Then, equation (1.3) can be rewritten in the following matrix form:

Z+ = Z−Sl(x, t, k), k ∈ R, (1.4)

Z → I2 + O

(
1

k

)
, k → ∞, (1.5)

where Z+(x, t, k) and Z−(x, t, k) are matrix functions which are analytic in the upper and
lower half complex k−plane respectively. Also, the ”jump ” matrix Sl(x, t, k) is defined
by

Sl(x, t, k) =

(
1 eikx+ik3tρ0(k)
0 1

)
. (1.6)

We note that Sl is triangular and satisfies detSl(x, t, k) = 1. The triangular form of
this matrix reflects the scalar nature of the relevant RH problem, while the unimodularity
is necessary for the unique solvability of this problem.

(iii) Deform this RH problem to obtain a new matrix RH problem which is appropriate
for the dressing method and apply this method. A RH problem is appropriate for the
dressing method when the relevant jump matrix is non-triangular and unimodular.

In the following, we propose a systematic deformation of the RH problem (1.4)-(1.5).
Namely, equation (1.1) in addition to (1.2), has also the Lax pair given by the equations
resulting from (1.2) after replacing k with −k. By performing the spectral analysis of this
Lax pair we obtain an equation of the form (1.4) with Sl(x, t, k) replaced by ST

l (x, t,−k).
Using this RH problem and the RH problem (1.4)-(1.5) it is possible to construct RH
problems which can be associated with nonlinear versions of (1.1). Indeed, starting from
a RH problem of the form (1.4)-(1.5) where the matrix Sl(x, t, k) is replaced by

S(x, t, k) = ST
l (x, t,−k)Sl(x, t, k), (1.7)

and using the dressing method we obtain the following non-Abelian version of (1.2)

Zx + ik[σ3, Z] = QZ, Zt + 4ik3[σ3, Z] = HZ, (1.8)
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where σ3 denotes the third Pauli matrix,

σ3 =

(
1 0
0 −1

)
, (1.9)

and the matrices Q,H appearing in the right hand side of the above equations are of
certain order in k and involve the function q and its derivatives.

Furthermore, we introduce two mechanisms for the construction of dressing operators.
These mechanisms yield nonlinear equations possessing the same linear part, but with
different nonlinear terms:

(i) We consider pairs of dressing operators with different decays at infinity. In partic-
ular, for the case of equation (1.1), we consider the following operators

∂x + ikσ̂3 − Q, ∂t + 4ik3σ̂3 − H,

where σ̂3 denotes the matrix commutator with σ3

σ̂3Z = [σ3, Z], (1.10)

and Z is a 2x2 matrix. If Q(k) is of order O(1) and H(k) is of order O(k2) the
compatibility of equations (1.8) yields the modified KdV equation

qt + qxxx + 6q2qx = 0, (1.11)

while, if Q(k) is of order O( 1
k
) and H(k) is of order O(k) we find the well-known KdV

equation

q + qxxx + 6qqx = 0. (1.12)

(ii) We consider dressing operators involving different powers of k. These operators cor-
respond to different Lax pairs of the same linear equation. For example, for the linearised
Schroedinger equation

iqt + qxx = 0, (1.13)

one pair of associated dressing operators is given by

∂x + ikσ̂3, ∂t + 2ik2σ̂3. (1.14)

The compatibility of the relevant Lax pair yields the Nonlinear Schroedinger (NLS)
equation

iqt + qxx − 2λ|q|2q = 0, λ = ±1. (1.15)

Similarly, using the dressing operators which are obtained from (1.14) after letting
k → k2 we find the derivative NLS equation

iqt + qxx − λ
(
|q|2q

)
x

= 0, λ = ±1. (1.16)

Assumptions

We assume that the initial conditions belong to the class of Schwartz functions denoted
by S(R).
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2 Lax pairs and the RH formalism for Linear Equations

A large class of linear and nonlinear integrable PDEs, including linear PDEs with con-
stant coefficients, can be written as the compatibility condition of two linear ordinary
differential equations (ODEs), the so-called Lax pair. It should be noted that Lax pairs
of linear equations, in contrast to Lax pairs of the nonlinear equations, can be obtained
algorithmically. In particular, it was shown in [5] that every linear PDE with constant
coefficients in two dimensions

P (∂x, ∂t)q = 0, (2.1)

possesses the Lax pair:

µx + ikµ = q, k ∈ C, (2.2)

P (∂x, ∂t)µ = 0, (2.3)

where µ(x, t, k) is a scalar function. For example, using a variation of the above result
we find that the sine-Gordon equation

qxt + q = 0, (2.4)

can be written as the compatibility condition of equation (2.2) with q replaced by qx

and of the following equation

µt +
i

k
µ =

i

k
q. (2.5)

Indeed, equation (2.3) yields

µxt + µ = 0. (2.6)

Taking the derivative with respect to t of (2.2) where q is replaced by qx and then
substituting the above equation in the resulting equation, we obtain (2.5).

For linear evolution equations, the Lax pair involves an ordinary differential equation
(ODE) in x, namely equation (2.2), as well as an ODE in t. Following [5], we derive two
families of Lax pairs for dispersive evolution equations. Indeed, let q(x, t) satisfy a general
dispersive evolution equation of order n,

(∂t + iw(−i∂x))q(x, t) = 0, (2.7)

where w(k) is a polynomial of order n,

w(k) = α0 + α1k + · · · + αnkn, n ∈ N+, (2.8)

where {aj}
n
1 real. Then, this equation possesses the Lax pairs

(i)

µx + ikµ = q(x, t), µt + iw(k)µ = −X(x, t, k) (2.9)
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where

X(x, t, k) = −

(
w(k) − w(l)

k + l

)
q, (2.10)

(ii)

µx − ikµ = q(x, t), µt + iw(k)µ = −Y (x, t, k) (2.11)

where

Y (x, t, k) =

(
w(k) − w(l)

k − l

)
q, (2.12)

and l + −i∂x.
Equations (2.9) and (2.11) with k replaced by kn, where n is a positive integer, are also

Lax pairs of equation (2.7). Therefore, equation (2.7) possesses two families of Lax pairs
given by (2.9) and (2.11) where k is replaced by kn. Each value of n gives a particular
member of these families.

In [7], the Lax pair associated with (1.13) was used to solve the Cauchy problem
on the infinite line. In the process, a scalar RH problem associated with (1.13) was
obtained. Here, using the Lax pair formulation of linear PDEs, we derive in an algorithmic
way matrix Riemann-Hilbert problems associated with linear equations. As illustrative
examples, we derive Riemann-Hilbert problems associated with two equations of the form
(2.7), namely equations (1.1) and (1.13). We also show that a similar approach is possible
for other linear equations, which are not of the form (2.7), such as (2.4).

Proposition 2.1. Let Z(x, t, k) satisfy the matrix RH problem (1.4)-(1.5) where the
”jump ” matrix Sl(x, t, k) is given by

Sl(x, t, k) =

(
1 e−iφ(x,t,κ)ρ0(k)
0 1

)
(2.13)

with
(i) φ(x, t, k) = kx + k2t,
(ii) φ(x, t, k) = kx + k3t,
(iii) φ(x, t, k) = kx + 1

k
t.

Let ρ0(k) be given by
(i)-(ii)

ρ0(k) =

∫
∞

−∞

eikxq0(x)dx, (2.14)

(iii)

ρ0(k) =

∫
∞

−∞

eikxq1(x)dx. (2.15)

Then Z12 is given by

Z12(x, t, k) =
1

2πi

∫
∞

−∞

e−iφ(x,t,κ)ρ0(κ)

κ − k
dκ. (2.16)
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Also, the complex-valued function q(x, t) satisfies
(i) the linearised Schroedinger equation (1.13) with q(x, 0) = q0(x) ∈ S(R),
(ii) the Stokes equation (1.1) with q(x, 0) = q0(x) ∈ S(R),
(iii) the sine-Gordon equation (2.4) with q(x, 0) = q0(x), qx(x, 0) = q1(x) and q0(x) −

2πm, q1(x) ∈ S(R) where m is an integer and x ∈ (−∞,∞), t ∈ [0,∞).
Proof.

Equations (1.4)-(1.5) are equivalent to

Z+
11 = Z−

11, Z+
21 = Z−

21, k ∈ R, (2.17)

Z+
12 − Z−

12 = e−(ikx+iw(k)t)ρ0(k)Z−

11, Z+
22 − Z−

22 = e−(ikx+iw(k)t)ρ0(k)Z−

21,(2.18)

Z±

11, Z
±

22 → 1, Z±

12, Z
±

21 → O

(
1

k

)
. (2.19)

The above jump and boundary conditions yield Z11 = Z22 = 1 and Z21 = 0. Further-
more, equation (2.18a) and the Plemelj formulae [2] imply that Z12 is given by (2.16).

The spectral analysis of (2.9) yields the RH problem

µ+(x, t, k) − µ−(x, t, k) = e−(ikx+iw(k)t)ρ0(k), k ∈ R, µ = O

(
1

k

)
. (2.20)

This RH problem is identical with the RH problem satisfied by Z12, namely equation
(2.18a). Therefore, Z12 = µ and the result follows from the definition of Lax pairs.

QED

3 Non-Abelian Lax Pairs

The spectral analysis of (2.11) yields a RH problem of the form (1.4)-(1.5) where the
jump matrix is obtained from (2.13) after letting k → −k . It turns out that one can use a
combination of the matrices appearing in this RH problem and in the RH of Proposition
2.1 for the derivation of nonlinear versions of (2.7). Namely, the requirements of unimod-
ularity and non-triangularity imply that Sl(k) should be replaced by one of the following:
ST

l (−k)Sl(k), Sl(k)ST
l (−k), ST

l (k)Sl(−k),or Sl(−k)ST
l (k).

Starting from RH problems of the form (1.4)-(1.5), where for convenience we have
replaced k by 2k, and using the Dressing Method, we now construct non-abelian Lax
pairs.

Proposition 3.1. Let the 2x2 matrix valued function Z(x, t, k) satisfy the RH problem
(1.4)-(1.5) where the matrix Sl(x, t, k) is replaced by S(x, t, k) defined by

S(x, t, k) =

(
1 e−i(2kx+8k3t)ρ0(k)

ei(2kx+8k3t)r0(k) 1 + ρ0(k)r0(k)

)
, (3.1)

and ρ0(k), r0(k) ∈ H1(R).
Then Z(x, t, k) satisfies the following Lax pairs:

Zx + ik[σ3, Z] = QZ, (3.2)
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Zt + 4ik3[σ3, Z] = (k2Q2 + kQ1 + Q0)Z, (3.3)

where

Q(x, t) = i[σ3, ζ1], (3.4)

Q0 = −4ζ2x − Q1ζ1, Q1 = −4ζ1x, Q2 = 4Q, (3.5)

and ζ1 and ζ2 are the coefficients of the 1/k and 1/k2 terms respectively, in the large
k asymptotic expansion of Z:

Z = I2 +
ζ1

k
+

ζ2

k2
+ O

(
1

k3

)
, k → ∞. (3.6)

Proof.

We construct dressing operators that satisfy the same RH problem as Z(x, t, k). We
observe that the matrix S(x, t, k) can be written in the form

S(x, t, k) = e−i(kx+4k3t)σ3

(
1 ρ0(k)
r0(k) 1 + ρ0(k)r0(k)

)
ei(kx+4k3t)σ3 .

The above result implies that the expressions

Zx + ikσ̂3Z, Zt + 4ik3σ̂3,

satisfy the RH problem (1.4)-(1.5) with S(x, t, k) defined by (3.1). Indeed, it can be
verified directly that if Z(x, t, k) satisfies (1.4), then

(∂x + ikσ̂3)Z
+ =

[
(∂x + ikσ̂3)Z

−
]
S(x, t, k), (3.7)

(∂t + 4ik3σ̂3)Z
+ = {(∂t + 4ik3σ̂3)Z

−}S(x, t, k). (3.8)

We now concentrate on the construction of the x−operator. We first note that if Q(x, t)
is an arbitrary 2 × 2 matrix, then

QZ+ = (QZ−)S.

From the above it follows that the two combinations

(∂x + ikσ̂3)Z, (QZ),

satisfy the the same jump condition (1.4) as the matrix Z.
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The basic idea of the Dressing Method is to choose the matrix Q(x, t) in such a way so
that the combination

(∂x + ikσ̂3 − Q)Z (3.9)

vanishes as k → ∞. Then, assuming that the Riemann-Hilbert problem (1.4)-(1.5) has
a unique solution, it follows that this combination vanishes identically. The assumption
that the combination (3.9) vanishes as k → ∞, fixes Q uniquely. Indeed, let the operator
M be defined by

MZ = (∂x + ikσ̂3 − Q)Z. (3.10)

Expanding Z(x, t, k) in the form (3.6) and substituting this expansion into equation
(3.10) we find

MZ = iσ̂3ζ1 − Q + O

(
1

k

)
, k → ∞. (3.11)

Thus, if Q(x, t) is defined by (3.4), then MZ ∼ O( 1
k
), hence equation (3.2) follows.

Let NZ be the t−operator. Since the expression Zt + 4ik3σ̂3Z ∼ O(k2), we consider
the following combination,

NZ = (∂t + 4ik3σ̂3 − k2Q2 − kQ1 − Q0)Z. (3.12)

Substituting (3.6) into the above equation and demanding that NZ → 0 as k → ∞, we
find (3.5c) as well as

Q0 = 4i[σ3, ζ3] − Q1ζ1 − 4Qζ2, (3.13)

Q1 = 4i[σ3, ζ2] − 4Qζ1. (3.14)

The large k− expansion of (3.2) implies

ζ1x + i[σ3, ζ2] − Qζ1 = 0. (3.15)

and

i[σ3, ζ3] = Qζ2 − ζ2x. (3.16)

Comparing equations (3.5b) and (3.15), we find (3.5a).

Also, equations (3.13) and (3.16) yield (3.5).

QED
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In analogy with the above Proposition, starting from the matrix RH problem associ-
ated with the linearised Schroedinger (1.13) and sine-Gordon (2.4) equations, we find the
following:

Proposition 3.2. Let the 2x2 matrix valued function Z(x, t, k) satisfy the RH problem
(1.4)-(1.5) where the matrix Sl(x, t, k) is replaced by S(x, t, k) defined by

S(x, t, k) =

(
1 e−i(2kx+4k2t)ρ0(k)

ei(2kx+4k2t)r0(k) 1 + ρ0(k)r0(k)

)
, (3.17)

and ρ0(k), r0(k) ∈ H1(R).

Then Z(x, t, k) satisfies the following Lax pair:

Zx + ik[σ3, Z] = QZ, (3.18)

Zt + 2ik2[σ3, Z] = (kA + B)Z, (3.19)

where Q is defined by (3.4),

A = 2Q, B = 2i[σ3, ζ2(x, t)] − 2Qζ1(x, t), (3.20)

and ζ1 and ζ2 are the coefficients of the 1/k,and 1/k2 terms in (3.6).

Proposition 3.3. Let the 2x2 matrix valued function Z(x, t, k) satisfy the RH problem
(1.4)-(1.5) where the matrix Sl(x, t, k) is replaced by S(x, t, k) defined by

S(x, t, k) =

(
1 e−i(2kx+ 1

2k
t)ρ0(k)

ei(2kx+ 1

2k
t)r0(k) 1 + ρ0(k)r0(k)

)
, (3.21)

and ρ0(k), r0(k) ∈ H1(R).

Then Z(x, t, k) satisfies the following Lax pair:

Zx + ik[σ3, Z] = QZ, (3.22)

Zt +
i

4k
[σ3, Z] =

i

4k
P̃Z, j = 1, 2, (3.23)

where Q is defined by (3.4a),

P̃ = −4iζ1t, (3.24)

and ζ1 is the coefficient of the 1/k term in (3.6).

It is also possible to consider an operator M1, involving the same combination ∂x +ikσ̂3

as M but with a faster decay at infinity, namely M1Z = O
(

1
k2

)
as k → ∞. The relevant

results for the Stokes equation are obtained in the following Proposition.
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Proposition 3.4. Let the 2x2 matrix valued function Z(x, t, k) satisfy the RH problem
(1.4)-(1.5) where the matrix Sl(x, t, k) is replaced by (3.1). Then Z(x, t, k) satisfies the
following Lax pair:

Zx + ik[σ3, Z] =
1

k
Q̃Z, (3.25)

Zt + 4ik3[σ3, Z] =

(
kQ̃1 + Q̃2 +

1

k
Q̃3

)
Z, (3.26)

where

Q̃(x, t) = ζ1x + i[σ3, ζ2], (3.27)

Q̃1(x, t) = 4iσ̂3ζ2(x, t), Q̃2(x, t) = −Q̃1(x, t)ζ1(x, t) + 4iσ̂3ζ3(x, t), (3.28)

Q̃3(x, t) = 4iσ̂3ζ4(x, t) + ζ1t(x, t) − Q̃1(x, t)ζ2(x, t) − Q̃2(x, t)ζ1(x, t), (3.29)

and ζ1, ζ2, ζ3, and ζ4 are the coefficients of the 1/k, 1/k2, 1/k3 and 1/k4 terms
respectively, in (3.6).

Proof.

Let the operator M1 be defined by

M1Z =

(
∂x + ikσ̂3 −

1

k
Q̃

)
Z. (3.30)

Substituting the expansion (3.6) in the above equation we obtain

M1Z = i[σ3, ζ1] +
1

k

{
ζ1x + i[σ3, ζ2] − Q̃

}
+ O

(
1

k2

)
, k → ∞. (3.31)

Thus, if Q̃ is given by (3.27) then Z(z, t, k) satisfies (3.25). Furthermore, instead of the
operator N, we now consider the operator N1 defined by

N1Z =

(
∂t + 4ik3σ̂3 − kQ̃1 − Q̃2 −

1

k
Q̃3

)
Z. (3.32)

It is straightforward to prove that if the matrices Q̃j, j = 1, ..., 3, are given by (3.28)-
(3.29) then Z(z, t, k) satisfies (3.26).

QED
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The linearised Schroedinger equation (1.13) possesses the Lax pair

µx + ik2µ = q(x, t), µt + ik4µ = iqx + k2q. (3.33)

Similarly to the previous cases, this Lax pair implies the following dressing operators

∂x + ik2 − kP − R, ∂t + 2ik4 − k3P3 − k2P2 − kP1 − P0. (3.34)

Using these operators we obtain the following result:
Proposition 3.5 Let the 2x2 matrix valued function Z(x, t, k) satisfy the RH problem

(1.4)-(1.5) where the matrix Sl(x, t, k) is replaced by (3.17). Then Z(x, t, k) satisfies the
following Lax pair:

Zx + ik2[σ3, Z] = (kP + R)Z, (3.35)

Zt + 2ik4[σ3, Z] =
(
k3P3 − k2P2 − kP1 − P0

)
Z, (3.36)

where Q is defined by (3.4),

P = i[σ3, ζ1], R = i[σ3, ζ2(x, t)] − Pζ1(x, t), (3.37)

P0 = 2ζ1xζ1 − 2ζ2x, P1 = −2ζ1x, P2 = 2R, P3 = 2P. (3.38)

and ζ1 and ζ2 are the coefficients of the 1/k,and 1/k2 terms in (3.6).

4 Derivation of Nonlinear Dispersive Equations

The compatibility condition of each of the Lax pairs obtained in the previous section yields
a corresponding pair of nonlinear dispersive PDEs for q(x, t) and r(x, t). These equations
are given in the following Propositions.

Proposition 3.6. Let q = 2i(ζ1)12, r = −2i(ζ1)21, a1 = (ζ1)11, δ1 = (ζ1)22, β2 = (ζ2)12
and γ2 = (ζ2)21 where ζ1 and ζ2 is the coefficient of the 1

k
and 1

k2 terms in the asymptotic
expansion (3.6). Let the function Z(x, t, k) satisfy equations (3.2) and (3.3). Then q,
r, a1, δ1, β2 and γ2 satisfy the following system of nonlinear dispersive equations:

qt + qxxx − 2(q2r)x − 4iq2r(a1 + δ1) + 8q(−rβ2 + qγ2) = 0, (4.1)

rt + rxxx − 2(qr2)x + 4iqr2(a1 + δ1) − 8r(−rβ2 + qγ2) = 0. (4.2)

Proof.

The diagonal part of (3.15) yields

a1x = 2iβ1γ1, δ1x = −2iβ1γ1. (4.3)
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The above equation and (3.5b) yield

Q1 = (−4)

(
2iβ1γ1 β1x

γ1x −2iβ1γ1

)
. (4.4)

Using (3.5a) and (4.4) we find

Q0 = (−4)

(
−2iβ1γ1a1 − β1xγ1 + a2x −2iβ2

1γ1 − β1xδ1 + β2x

−γ1xa1 + 2iβ1γ
2
1 + γ2x −γ1xβ1 + 2iβ1γ1δ1 + δ2x

)
. (4.5)

The off diagonal and diagonal parts of (3.14) and (3.16) respectively, yield

a2x = 2iβ1γ2, δ2x = −2iβ2γ1, (4.6)

β1x = 2iβ1δ1 − 2iβ2, γ1x = −2iγ1a1 + 2iγ2. (4.7)

Taking the derivative of (4.7) with respect to x and substituting the resulting equation
as well as the above two equations into (4.5), we find

Q0 =

(
8iβ1γ1(a1 + δ1) − 8i(β2γ1 + β1γ2) 16iβ2

1γ1 − 2iβ1xx

−16iβ1γ
2
1 + 2iγ1xx −8iβ1γ1(a1 + δ1) + 8i(β2γ1 + β1γ2)

)
. (4.8)

Substituting Z = zei(kx+4k3t)σ3 into equations (3.2) and (3.3) and demanding that
ztx = zxt we find

Qt + [−ikσ3 + Q,−4ik3σ3 + k2Q2 + kQ1 + Q0] − k2Q2x − kQ1x − Q0x = 0. (4.9)

The O(1) terms cancel iff

Qt + [Q,Q0] − Q0x = 0. (4.10)

Then, the (12) and (21) element of equation (4.10) yield equations (4.1)-(4.2).

QED

For the cases of linearised Schroedinger and sine-Gordon equations we obtain the fol-
lowing results:

Proposition 3.7. Let q and r be defined as in Proposition 3.6. Let the function
Z(x, t, k) satisfy equations (3.18) and (3.19).

Then q, and r satisfy the following system of nonlinear dispersive equations:

qt − iqxx + 2iq2r = 0, (4.11)

rt + irxx − 2iqr2 = 0. (4.12)

Proof.
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Equations (3.15) and (3.20b) imply

B = −2ζ1x. (4.13)

Let ζ1 be defined by

ζ1 =

(
a1 β1

γ1 δ1

)
. (4.14)

Equation (3.4) implies that Q is given by

Q =

(
0 2iβ1

−2iγ1 0

)
. (4.15)

Thus, equations (4.3) and (4.13) give

B =

(
−4iβ1γ1 −2β1x

−2γ1x 4iβ1γ1

)
= −4iβ1γ1σ3 − iQxσ3. (4.16)

Substituting Z = zei(kx+2k2t)σ3 into equations (3.18) and (3.19) as well as substituting
in the latter equation the matrix B(x, t) by the expression (4.16) and demanding that
ztx = zxt we obtain an equation involving terms of different powers of k as well as Q and
its derivatives.The O(1) terms of this equation cancel iff

Qt + [Q,−iQ2σ3 − iQxσ3] + i
(
Q2
)
x
σ3 + iQxxσ3 = 0. (4.17)

Taking into consideration (4.15) the (12) and (21) element of equation (4.17) yield the
system (4.11)-(4.12).

QED

Proposition 3.8. Let q, r, a1 and δ1 be defined as in Proposition 3.6 Let the function
Z(x, t, k) satisfy equations (3.22) and (3.23). Then p, q, r and s satisfy the following
system of dispersive equations:

a1xt = −δ1xt, 2iδ1xt = qtr + rtq. (4.18)

Proof.

Substituting the asymptotic expansion

Z = Z0(x, t) + kZ1(x, t) + O(k2), k → 0. (4.19)

into (3.23) we find

P̃ = −[σ3, Z0]Z
−1
0 . (4.20)

Letting

Z0 =

(
A0 B0

Γ0 ∆0

)
,
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equation (4.20) implies

P̃ = 2

(
B0Γ0 −B0A0

Γ0∆0 −B0Γ0

)
. (4.21)

Comparing equations (3.4) and (3.24) we find the following equations

B0Γ0 = −2ia1t, B0Γ0 = 2iδ1t, (4.22)

B0A0 = qt, Γ0∆0 = rt. (4.23)

The matrix P̃ becomes

P̃ = 2

(
−2ia1t −qt

rt −2iδ1t

)
. (4.24)

Substituting

Z = zei(kx+ 1

4k
)σ3 (4.25)

into the Lax pair (3.18)-(3.23) and taking into consideration the compatibility condition
ztx = zxt we find an equation involving terms with powers of k and the matrices Q, Q̃.
The O

(
1
k

)
term of this equation is

P̃x + [P̃ ,Q] + [σ3, Q] = 0. (4.26)

This equation can be rewritten as
(

−2ia1t −qt

rt −2iδ1t

)

x

+

(
−qtr − rtq 2iq(δ1t − a1t)
2ir(a1t − δ1t) qtr + rtq

)
+

(
0 q
−r 0

)
= 0. (4.27)

Therefore the (11) and (22) terms of the above equation yield equations (4.18).

QED

Proposition 3.9. Let β2, γ2, a1 and δ1 be defined as in Proposition 3.6. Let the
function Z(x, t, k) satisfy equations (3.25) and (3.26). Then β2, γ2, a1 and δ1 satisfy the
following system of nonlinear dispersive equations:

iβ2t + iβ2xxx − 4β2x(a1x − δ1x) − 2β2(a1x − δ1x)x = 0, (4.28)

iγ2t + iγ2xxx − 4γ2x(a1x − δ1x) − 2γ2(a1x − δ1x)x = 0. (4.29)

Proof.

Equation (3.28) implies

Q̃1 = 4i

(
0 2β2

−2γ2 0

)
. (4.30)
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The large k− expansion of (3.25) implies

i[σ3, ζ1] = 0, (4.31)

ζ2x + i[σ3, ζ3] = Q̃ζ1, (4.32)

i[σ3, ζ4] = Q̃ζ2 − ζ3x. (4.33)

Comparing equations (3.28b) and (4.32) we find:

Q̃2 = 4Q̃ζ1 − 4ζ2x − Q̃1ζ1. (4.34)

Let ζ2 be defined by

ζ2 =

(
a2 β2

γ2 δ2

)
. (4.35)

Then equations (3.27) and (4.31) yield

Q̃ =

(
a1x 2iβ2

−2iγ2 δ1x

)
. (4.36)

Equations (4.30), (4.31) and (4.36) imply

Q̃ζ1 =

(
a1xa1 2iβ2δ1

−2iγ2a1 δ1xδ1

)
, Q̃1ζ1 =

(
0 8iβ2δ1

−8iγ2a1 0

)
. (4.37)

The diagonal part of (4.32) yields

a2x = a1xa1, δ2x = δ1xδ1. (4.38)

Equation (4.34) after using (4.38) yields an expression for Q̃2 :

Q̃2 = (−4)

(
0 β2x

γ2x 0

)
. (4.39)

In order to find an expression for Q̃3 we start from equation (3.29). Using (4.30) and
(4.39) we find

Q̃1ζ2 = 8i

(
β2γ2 β2δ2

−γ2α2 −β2γ2

)
, Q̃2ζ1 = (−4)

(
0 β2xδ1

γ2xα1 0

)
(4.40)

Then equation (3.29) yields

Q̃3 =

(
−8iβ2γ2 + a1t −8iβ2δ2 + 4β2xδ1 + 8iβ4

8iγ2a2 + 4γ2xa1 − 8iγ4 8iβ2γ2 + δ1t

)
. (4.41)

Equation (4.33) taking into consideration (4.36), yields

2iβ4 = a1xβ2 + 2iβ2δ2 − β3x, (4.42)
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−2iγ4 = δ1xγ2 − 2iγ2a2 − γ3x. (4.43)

Then

Q̃3 =

(
−8iβ2γ2 + a1t 4β2xδ1 + 4a1xβ2 − 4β3x

4γ2xa1 + 4δ1xγ2 − 4γ3x 8iβ2γ2 + δ1t

)
(4.44)

Equation (4.32) implies

2iβ3 = −β2x + 2iβ2δ1, (4.45)

−2iγ3 = −γ2x − 2iγ2a1. (4.46)

Substituting the above into (4.44), we obtain the following expression for Q̃3 :

Q̃3 =

(
−8iβ2γ2 + a1t 4β2(a1x − δ1x) − 2iβ2xx

4γ2(δ1x − a1x) + 2iγ2xx 8iβ2γ2 + δ1t

)
(4.47)

Substituting Z = zei(kx+4k3t) into the eigenvalue equations (3.25)-(3.26) and demanding
that these equations are compatible we find

1

k
Q̃t − kQ̃1x − Q̃2x −

1

k
Q̃3x + [−ikσ3 +

1

k
Q̃,−4ik3σ3 + kQ̃1 + Q̃2 +

1

k
Q̃3] = 0. (4.48)

The O
(

1
k

)
term of the above equation is

Q̃t + [Q̃, Q̃2] − Q̃3x = 0. (4.49)

The (12) and (21) terms of equation (4.49) yields the system (4.28)-(4.29).

QED

Proposition 3.10. Let q and r be defined as in Proposition 3.6. Let the function
Z(x, t, k) satisfy equations (3.35) and (3.36).

Then q, and r satisfy the following system of nonlinear dispersive equations:

qt − iqxx + i(q2r)x = 0, (4.50)

rt + irxx − i(qr2)x = 0. (4.51)

Proof.

Equations (3.37) yield

P =

(
0 2iβ2

−2iγ2 0

)
, R =

(
−2iβ1γ1 2i(β2 − β1δ1)
−2i(γ2 − γ1a1) 2iβ1γ1

)
. (4.52)



490 D A Pinotsis

Also, equation (3.38c) implies

P̃0 =

(
a1xa1 + β1xγ1 − a2x a1xβ1 + β1xδ1 − β2x

δ1xγ1 + γ1xa1 − γ2x δ1xδ1 + γ1xβ1 − δ2x

)
. (4.53)

Following precisely analogous steps to the previous cases we obtain the following equa-
tions

i[σ3, P̃0] = −2Bx + [A,−2ζ1x], (4.54)

Pt + 2ζ1xx + 2[P, P̃0] + [R,−ζ1x] = 0. (4.55)

The first of the above equations implies

a1 = δ1. (4.56)

Then, the (12) and (21) terms of (4.55) yield the system (4.50)-(4.51).

QED

5 Nonlinear Integrable Equations

Considering appropriate reductions of the above systems of nonlinear dispersive equations
yields single nonlinear integrable versions of the linear PDEs considered in Proposition
2.1.

Modified KdV. The system (4.1)-(4.2) admits the reduction r = −q. Then, equations
(4.3) and (4.7) yield a1 = −δ1 and β2 = −γ2 and this system reduces to the modified KdV
equation (1.11).

Nonlinear Schroedinger. The reduction r = λq, λ = ±1, implies that the system
(4.11)-(4.12) reduces to the NLS equation (1.15) as well as to the complex conjugate of
this equation.

Derivative NLS. The reduction r = λq, λ = ±1, reduces the system (4.50)-(4.51) to
derivative NLS (1.16) and its complex conjugate.

sine-Gordon. Letting

q = r =
fx

2
(5.1)

in equation (4.23) it follows that

A0B0 − Γ0∆0 = 0. (5.2)

The choice

A0 = ∆0 = cos
f

2
, B0 = Γ0 = sin

f

2
, (5.3)

satisfies equation (5.2). Then, equation (4.22) yields

2ia1t = −2iδ1t = − sin2 f

2
(5.4)
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Using (5.1) and (5.4), equations (4.18) reduce to the nonlinear sine-Gordon equation:

fxt = sin f. (5.5)

KdV. Substituting the expansion,

Z = Z0 + kZ1 + O(k2), k → 0, (5.6)

into (3.25) we find

Q̃Z0 = 0. (5.7)

The above equation implies that one should restrict the form of either Q̃ or Z̃. Re-
stricting Z can lead to inconsistencies, therefore we require the matrix Q̃ to be singular,
namely det Q̃ = 0, or equivalently

a1xδ1x = 4β2γ2. (5.8)

The O
(

1
k2

)
term of equation (4.48) yields

[Q̃, Q̃3] = 0. (5.9)

A simple algebraic manipulation of this equation implies

β2 = γ2. (5.10)

Then the reduction

a1x = −δ1x =
q

2i
, (5.11)

and equation (5.8) imply that the system (4.28)-(4.29) reduces to the Korteweg-de-Vries
equation (1.12).

6 Conclusions

The modelling of a variety of important physical phenomena requires the formulation of
nonlinear partial differential equations (PDEs). There exists a particular class of such
equations which are called integrable, and which possess two distinctive characteristics:
first, they appear in many areas of mathematics and physics and secondly, they can be
investigated analytically using the inverse scattering method. Regarding the first char-
acteristic we note that physical applications of integrable equations include ion-acoustic,
electromagnetic, electrostatic, ionospheric, and water waves, stimulated Raman scattering,
biology, relativity, and quantum field theory (see for example [1]). This reflects the fact
these equations express a certain physical coherence, which is present in a variety of phys-
ical phenomena. Calogero and Eckhaus have shown [3],[4] that the ubiquitous occurence
of integrable PDEs is due to the fact that they can be obtained from very large classes
of nonlinear evolution equations through a limiting procedure involving rescalings and an
appropriate asymptotic expansion. Regarding the inverse scattering method we note that



492 D A Pinotsis

for equations in 1+1 dimensions this method is based on the spectral analysis of an eigen-
value equation which in turn requires the use of the Riemann-Hilbert (RH) formalism.
The generalisation of this formalism needed for the investigation of initial-boundary value
problems, for the nonlinear Schroedinger, KdV, modified KdV and sine-Gordon equations
has been developed in [8], [14], [9], [12], [11] and [13].

The Dressing Method is a general method for the derivation of both nonlinear integrable
PDEs and large classes of their solutions. This method was introduced by Zakharov and
Shabat in [17]. The first version of this method was based on a Gelfand-Levitan-Marchenko
(GLM) type equation, while its second version [18] was based on the RH formalism. In the
second version, one first postulates a matrix RH problem and then constructs appropriate
dressing operators.

We present an approach for the systematic derivation of nonlinear integrable partial dif-
ferential equations in 1+1 dimensions. Starting from model linear equations and using the
Dressing Method, we first derive systems of nonlinear dispersive PDEs. Then, considering
appropriate reductions of these systems we obtain nonlinear integrable equations.

We show how one can construct in an algorithmic way matrix Riemann-Hilbert (RH)
problems appropriate for the Dressing Method as opposed to postulating them ad hoc.
Furthermore, we introduce two mechanisms for the construction of the relevant dressing
operators. Each of these mechanisms yields different nonlinearities. In particular, the
first mechanism uses operators with the same dispersive part, but with different decay at
infinity. As an illustrative example of this mechanism, we start with the Stokes equation
and obtain the KdV and modified KdV equations. The second mechanism uses pairs of
operators corresponding to different Lax pairs of the same linear equation. We demonstrate
this mechanism using the example of the linearised Schroedinger equation from which we
derive the NLS and Derivative NLS equations.

Our approach can be applied to a large class of linear equations of physical significance,
including equations of the form (2.7). It is expected that some of the resulting nonlinear
integrable equations will also be of physical significance.

A preliminary version of this work appeared in [10].
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