Strong Law of Large Numbers for α Mixing Sequences

Yang Wenquan

School of mathematics and computer sciences, Jianghan University, Wuhan, China yangwenq@jhun.edu.cn

Abstract—For independent identically distributed random variables, the Marcinkiewicz strong law of large numbers is that sppose $EX_n=0$, Then $n^{-1/p}S_n\to 0, n\to\infty, a.s.$ if and only if $E|X_1|^p<\infty$. Let $\{X_n,n\ge 1\}$ be an identically distributed α -mixing sequence of random variables, in this paper , the Marcinkiewicz's strong law of large numbers for $\{X_n,n\ge 1\}$ is discussed, by using Wang Xiaoming's Borell-Cantelli Lemma (Wang X. M.1997), we have the following equiverlences, $\forall \varepsilon>0$

$$2^{-nr}(S_{2^{n}+2^{n-1}}-S_{2^{n}}) \to 0, n \to \infty, a.s. \Leftrightarrow \sum_{n=1}^{\infty} P(A_{n}^{(1)}) < \infty,$$

$$2^{-nr}(S_{2^{n+1}}-S_{2^{n}+2^{n-1}}) \to 0, n \to \infty, a.s. \Leftrightarrow \sum_{n=1}^{\infty} P(A_{n}^{(2)}) < \infty,$$

$$2^{-nr} \max_{2^n < i < 2^n + 2^{n-1}} |S_j - S_{2^n}| \to 0, \quad n \to \infty, \quad a.s. \Leftrightarrow \sum_{n=1}^{\infty} P(B_n^{(1)}) < \infty,$$

$$2^{-nr} \max_{\frac{2^{n}+2^{n-1}}{s^{n}} \pm s \geq 2^{n+1}} |S_{j} - S_{2^{n}+2^{n-1}}| \to 0, n \to \infty, a.s. \Leftrightarrow \sum_{n=1}^{\infty} P(B_{n}^{(2)}) < \infty.$$

By use of Herrndorf's maximal inequality (Herrndorf N. 1983), necessary conditions for Marcinkiewicz's strong law of large numbers are obtained, which require low mixing speed. As a consequence, by use of Shao Qiman's result(1995), we obtain the Marcinkiewicz's strong law of large numbers for ρ -mixing sequence of random variables.

Keywords- α -mixing; strong law of large numbers; necessary conditions; strong convergence. AMS 2000 subject classication: 60F15, 60G50.

I. INTRODUCTION AND MAIN RESULTS

Let $\{X_n, n \ge 1\}$ be a sequence of random variables,

$$\begin{split} \det S_n &= \sum_{i=1}^n X_i, \, n \geq 1; S_0 = 0, \\ \mathcal{F}_1^k &= \sigma(X_i, \, 1 \leq i \leq k), \\ \mathcal{F}_k^\infty &= \sigma(X_i, i \geq k). \end{split}$$

For $n \ge 0$, let

$$\alpha(n)$$
 @ sup sup { $|P(AB) - P(A)P(B)|$,

$$A \in \mathcal{F}_1^k, B \in \mathcal{F}_{k+n}^{\infty}$$
;

$$\varphi(n)$$
 @ sup sup { $|P(B/A) - P(B)|$,

$$A \in \mathcal{F}_1^k, B \in \mathcal{F}_{k+n}^\infty, P(A) > 0$$
;

$$\rho(n)$$
 @ $\sup_{k\geq 1} \sup\{|EXY - EXEY|:$

$$X \in L_2(\mathcal{F}_1^k), Y \in L_2(\mathcal{F}_{k+n}^\infty)$$
.

If
$$\alpha(n) \to 0$$
, $\varphi(n) \to 0$, $\rho(n) \to 0$, $n \to \infty$

respectively, the $\{X_n, n \ge 1\}$ is called α -mixing, φ -mixing, φ -mixing respectively.

For i.i.d random variables, the Marcinkiewicz strong law of large numbers is that

Theorem A . sppose $EX_n = 0$, Then

$$n^{-\frac{1}{p}}S_n \to 0, n \to \infty, a.s. \tag{1}$$

if and only if $E | X_1 |^p < \infty$.

Lately there has been a great amount of work on strong law of large numbers for dependent random variables, such as the discussion by Wang Xiaoming(1997) Xue Liugen(1994) on φ -mixing sequences, the discussion by Kuczmaszewska A.(2005), Shao Qiman(1995) on φ -mixing sequences, and the discussion by Meng Y. J., Lin Z.Y.(2010), Bryc W., Smolenski W.(1993), Peligrad M., Gut A. Yang S. C. (1998), Kuczmaszewska (2008) on φ -mixing sequences. In this paper, we obtain the necessary conditions for strong law of large numbers similar to that of theorem A for α -mixing sequences.

Theorem 1. Let $\{X_n, n \ge 1\}$ be an identically distributed α -mixing sequence of random variables, assume that

$$\sum_{n=1}^{\infty} \alpha(2^n) < \infty \tag{2}$$

$$\varphi(1) < 1 \tag{3}$$

If for some r > 0,

$$\lim_{n \to \infty} n^{-r} S_n = 0 \tag{4}$$

Then
$$E \mid X_1 \mid_{r}^{\frac{1}{r}} < \infty$$
 (5)

Theorem 2. Let $\{X_n, n \ge 1\}$ be an identically distributed ρ -mixing sequence of random variables with

$$EX_n=0$$
 , assume that $1 \le p < 2$, $\varphi(1) < 1$,
$$\sum_{n=1}^{\infty} \rho(2^n) < \infty \text{ . Then}$$

$$\lim_{n\to\infty} n^{-1/p} S_n = 0. \quad a.s.$$

if and only if

$$E|X_1|^p < \infty$$
.

2. PROOF OF THE THEOREMS

To prove our theorem, we need the following lemmas.

Lemma 1. (Wang Xiaoming 1997) Let $\{X_n, n \ge 1\}$ be an α -mixing sequence of random variables, assume that $A_n \in \mathcal{F}_{u_i}^{v_i}$, where u_i and v_i are positive integers satisfying $u_i \le v_i \le u_{i+1} \le v_{i+1}$, i = 1, 2, L,

if
$$\sum_{i=1}^{\infty} \alpha(u_{i+1} - v_i) < \infty$$
, then $P(A_n, i.o.) = 1 \iff \sum_{n=1}^{\infty} P(A_n) = \infty$.

Lemma 2. Suppose that $\{X_n, n \ge 1\}$ satisfies (2), then for r > 0,

$$2^{-nr}(S_{2^{n}+2^{n-1}}-S_{2^{n}}) \to 0, n \to \infty, a.s.$$
 (6)

$$\iff \sum_{n=1}^{\infty} P(A_n^{(1)}) < \infty, \quad \forall \varepsilon > 0;$$
 (7)

$$2^{-nr}(S_{2^{n+1}} - S_{2^{n}+2^{n-1}}) \to 0, n \to \infty, a.s.$$
 (8)

$$\iff \sum_{n=1}^{\infty} P(A_n^{(2)}) < \infty, \quad \forall \varepsilon > 0.$$
 (9)

Where

$$A_{n}^{(1)} @ A_{n}^{(1)}(\varepsilon, r)$$

$$@ \{ | S_{2^{n}+2^{n-1}} - S_{2^{n}}| \ge \varepsilon 2^{nr} \}, n \ge 1$$

$$A_{n}^{(2)} @ A_{n}^{(2)}(\varepsilon, r)$$

$$@ \{ | S_{2^{n+1}} - S_{2^{n}+2^{n-1}}| \ge \varepsilon 2^{nr} \}, n \ge 1$$

Proof. Clearly, $A_n^{(1)} \in \mathcal{F}_{2^n+1}^{3 \times 2^{n-1}}$, then $u_n = 2^n + 1$, $v_n = 3 \times 2^{n-1}$, by (2) we have

$$\sum_{n=1}^{\infty} \alpha(u_{n+1} - v_n) = \sum_{n=1}^{\infty} \alpha(2^{n-1} + 1)$$

$$\leq \sum_{n=1}^{\infty} \alpha(2^{n-1}) < \infty$$

By lemma 1, we have

$$(7) \Longleftrightarrow P(A_n^{(1)}, \text{i.o.}) = 0 \Longleftrightarrow (6).$$

Now, we prove $(8) \iff (9)$.

Obviously,
$$A_n^{(1)} \in \mathcal{F}_{3 \times 2^{n-1} + 1}^{2^{n+1}}$$
, then $u_n = 3 \times 2^{n-1} + 1$, $v_n = 2^{n+1}$, by (2) we have

$$\sum_{n=1}^{\infty} \alpha(u_{n+1} - v_n) = \sum_{n=1}^{\infty} \alpha(2^n + 1)$$

$$\leq \sum_{n=1}^{\infty} \alpha(2^n) < \infty$$

By lemma 1, we have

$$(9) \iff P(A_n^{(2)}, \text{i.o.}) = 0 \iff (8)$$
.

The proof of lemma 2 is complete.

Lemma 3. (Herrndorf N. 1983) Let $\{X_n, n \ge 1\}$ be an arbitrary sequences of random variables. Suppose that q is a positive integer. Then for any a > 0, every positive integer $s \ge q + 1$, and nonnegative integer m,

$$\left(1 - \varphi(q) - \max_{q \le j \le s} P(|S_{m+s} - S_{m+j}| \ge a)\right)$$

$$\cdot P\left(\max_{j \le s} |S_{m+j} - S_m| \ge 3a\right)$$

$$\le P(|S_{m+s} - S_m| \ge a) + P\left((q-1)\max_{j \le s} |X_{m+j}| \ge a\right)$$

Lemma 4. Suppose that $\{X_n, n \ge 1\}$ satisfies (2), then for r > 0,

$$2^{-nr} \max_{2^{n} \le j \le 2^{n} + 2^{n-1}} |S_{j} - S_{2^{n}}| \to 0, \quad n \to \infty, \quad a.s.$$
(10)

$$\iff \sum_{n=1}^{\infty} P(B_n^{(1)}) < \infty, \quad \forall \varepsilon > 0;$$
 (11)

$$2^{-nr} \max_{2^{n}+2^{n-1} \le j \le 2^{n+1}} |S_{j} - S_{2^{n}+2^{n-1}}| \to 0, \quad n \to \infty, \quad a.s.$$
(12)

$$\iff \sum_{n=1}^{\infty} P(B_n^{(2)}) < \infty, \quad \forall \varepsilon > 0;$$
 (13)

Where

$$B_n^{(1)} @ B_n^{(1)}(\varepsilon, r)$$

$$@ \{ \max_{2^n \le j \le 2^n + 2^{n-1}} | S_j - S_{2^n} | \ge \varepsilon 2^{nr} \}, n \ge 1;$$

$$\begin{split} B_{n}^{(2)} & @ B_{n}^{(2)}(\varepsilon, r) \\ & @ \{ \max_{2^{n}+2^{n-1} \le j \le 2^{n+1}} \big| S_{j} - S_{2^{n}+2^{n-1}} \big| \ge \varepsilon 2^{nr} \}, \, n \ge 1 \, . \end{split}$$

Proof. Clearly, $B_n^{(1)} \in \mathcal{F}_{2^n+1}^{3 \times 2^{n-1}}$, then $u_n = 2^n + 1$, $v_n = 3 \times 2^{n-1}$, by (2) we have

$$\sum_{n=1}^{\infty} \alpha(u_{n+1} - v_n) = \sum_{n=1}^{\infty} \alpha(2^{n-1} + 1)$$

$$\leq \sum_{n=1}^{\infty} \alpha(2^{n-1}) < \infty$$

By lemma 1, we have

$$(11) \Longleftrightarrow P(B_n^{(1)}, \text{i.o.}) = 0 \Longleftrightarrow (10)$$
.

Now, we prove $(12) \iff (13)$.

Obviously,
$$B_n^{(1)} \in \mathcal{F}_{3\times 2^{n-1}+1}^{2^{n+1}}$$
, then $u_n=3\times 2^{n-1}+1$, $v_n=2^{n+1}$, by (2) we have

$$\sum_{n=1}^{\infty} \alpha(u_{n+1} - v_n) = \sum_{n=1}^{\infty} \alpha(2^n + 1)$$

$$\leq \sum_{n=1}^{\infty} \alpha(2^n) < \infty$$

By lemma 1, we have

$$(13) \iff P(A_n^{(2)}, \text{i.o.}) = 0 \iff (12)$$
.

The proof of lemma 3 is complete.

Lemma 5. (Shao Q. M. 1995) Suppose that $1/2 < \alpha \le 1, p\alpha \ge 1$. Let $\{X_n, n \ge 1\}$ be an identically distributed ρ -mixing sequence of random variables with $EX_n = 0$ and $E\big|X_n\big|^p < \infty$. Assume that

$$\sum\nolimits_{n=1}^{\infty}\rho^{2/r}(2^n)<\infty$$

Where r=2 if $1 \le p < 2$ and r>p if $p \ge 2$, Then for all $\varepsilon > 0$,

$$\sum_{n=1}^{\infty} n^{p\alpha-2} P(\max_{i \le n} |S_i| \ge \varepsilon n^{\alpha}) < \infty.$$

Proof of theorem 1. By (4), we have

$$n^{-r}S_{n} \xrightarrow{P} 0, n \to \infty.$$
 (14)

$$2^{-nr} \left(S_{2^{n}+2^{n-1}} - S_{2^{n}} \right) = 2^{-nr} S_{3 \times 2^{n-1}} - 2^{-nr} S_{2^{n}}$$

$$= \left(\frac{3}{2} \right)^{-r} \left(3 \times 2^{n-1} \right)^{-r} S_{3 \times 2^{n-1}} - 2^{-nr} S_{2^{n}} \to 0,$$

$$n \to \infty, a.s.$$

That is $(4) \Rightarrow (6)$.

By (14), we have

$$\begin{split} &2^{-nr}(S_{2^{n+1}} - S_{2^{n} + 2^{n-1}}) \\ &= 2^{-nr}S_{2^{n+1}} - 2^{-nr}S_{2^{n} + 2^{n-1}} \\ &= 2^{r}\left(2^{n+1}\right)^{-r}S_{2^{n+1}} - \left(\frac{3}{2}\right)^{-r}\left(3 \times 2^{n-1}\right)^{-r}S_{3 \times 2^{n-1}} \\ &\to 0, \quad n \to \infty, a.s \end{split}$$

That is $(4) \Rightarrow (8)$.

By lemma 2 we get $(6)+(8) \Rightarrow (7)+(9)$. In the following, we show that $(14)+(7) \Rightarrow (11)$.

Put $m = 2^n$, $s = 2^{n-1}$, q = 1, $a = \varepsilon 2^{nr}$, by lemma 3 we obtain

$$\left(1 - \varphi(q) - \max_{q \le j \le s} P(|S_{m+s} - S_{m+j}| \ge a)\right)$$

$$\cdot P(\max_{i \le s} |S_{m+j} - S_m| \ge 3a)$$

$$\leq P(|S_{m+s} - S_m| \geq a) + P\left((q-1) \max_{j \leq s} |X_{m+j}| \geq a\right)$$
By (3), we get $1 - \varphi(1) > 0$,
$$\max_{1 \leq j \leq 2^{n-1}} P(|S_{2^n + 2^{n-1}} - S_{2^n + j}| \geq \varepsilon 2^{nr})$$

$$\leq \max_{1 \leq j \leq 2^{n-1}} \left(P(|S_{2^n + 2^{n-1}}| \geq \frac{\varepsilon}{2} 2^{nr}) + P(|S_{2^n + j}| \geq \frac{\varepsilon}{2} 2^{nr})\right)$$

$$\leq 2 \max_{1 \leq j \leq 2^{n-1}} P(|S_{2^n+j}| \geq \frac{\varepsilon}{2} 2^{nr})$$

Combining $1-\varphi(1)>0$ with (14) yields that there exists a positive integer N_1 such that for $n>N_1$,

$$2 \max_{1 \le j \le 2^{n-1}} P(|S_{2^{n}+j}| \ge \frac{\varepsilon}{2} 2^{nr}) \le \frac{1}{2} (1 - \phi(1)).$$

Hence

$$\max_{1 \le j \le 2^{n-1}} P(|S_{2^n + 2^{n-1}} - S_{2^n + j}| \ge \varepsilon 2^{nr}) \le \frac{1}{2} (1 - \phi(1)),$$

By (15), we obtain

$$\max_{j \le 2^{n-1}} P(|S_{2^{n}+j} - S_{2^{n}}| \ge 3\varepsilon 2^{nr})$$

$$\leq 2 \left(1 - \phi(1)\right)^{-1} P(\mid S_{2^n + 2^{n-1}} - S_{2^n} \mid \geq \varepsilon 2^{nr}).$$

So (11) follows from (7) immediately. In the following, we show that

$$(11) + (13) \Rightarrow$$

 $\left\{ \max_{2^{n} < j < 2^{n+1}} \left| S_{j} - S_{2^{n}} \right| \ge \varepsilon 2^{nr} \right\}$

$$P(\max_{2^n < j \le 2^{n+1}} | S_{2j} - S_{2^n} | \ge \varepsilon 2^{nr}) \le \infty, \quad \forall \varepsilon > 0$$

$$(16)$$

Since

$$\begin{split} &= \left\{ \max_{2^{n} < j \leq 2^{n} + 2^{n-1}} | S_{j} - S_{2^{n}} | \geq \varepsilon 2^{nr} \right\} \\ &\qquad \qquad U \left\{ \max_{2^{n} + 2^{n-1} < j \leq 2^{n+1}} | S_{j} - S_{2^{n}} | \geq \varepsilon 2^{nr} \right\} \\ & \subset B_{n}^{(1)}(\varepsilon, r) \\ &\qquad \qquad U \left\{ \max_{2^{n} + 2^{n-1} < j \leq 2^{n+1}} | S_{j} - S_{2^{n} + 2^{n-1}} | \geq \frac{\varepsilon}{2} 2^{nr} \right\} \\ &\qquad \qquad U \left\{ | S_{2^{n} + 2^{n-1}} - S_{2^{n}} | \geq \frac{\varepsilon}{2} 2^{nr} \right\} \end{split}$$

$$\subset B_n^{(1)}(\varepsilon/2,r) \cup B_n^{(2)}(\varepsilon/2,r), \forall \varepsilon > 0.$$

So (16) follows from (11) and (13) immediately. Since $P(\max_{2^n < j < 2^{n+1}} | X_j | \ge \varepsilon 2^{nr})$

$$=P(\max_{2^{n} < j < 2^{n+1}} | S_j - S_{j-1}| \ge \varepsilon 2^{nr})$$

$$\leq P(\max_{2^n < j \leq 2^{n+1}} \mid S_j - S_{2^n} \mid \geq \frac{\varepsilon}{2} 2^{nr})$$

$$+P(\max_{2^{n}< j\leq 2^{n+1}} |S_{j-1} - S_{2^{n}}| \geq \frac{\varepsilon}{2} 2^{nr})$$

$$\leq 2P(\max_{2^n < j \leq 2^{n+1}} |S_j - S_{2^n}| \geq \frac{\varepsilon}{2} 2^{nr})$$

So (16) yields that

$$\sum_{n=1}^{\infty} P(\max_{2^n < j \le 2^{n+1}} | X_j | \ge \varepsilon 2^{nr}) < \infty, \forall \varepsilon > 0$$
 (17)

$$\sum_{n=1}^{\infty} P(\max_{j \le 2^n} | X_j | \ge \varepsilon 2^{nr}) < \infty, \forall \varepsilon > 0.$$
 (18)

$$\begin{split} & \sum_{n=2^{m+1}}^{2^{m+1}} \frac{1}{n} P(\max_{j \le n} | X_j | \ge \varepsilon n^r) \\ & \le \sum_{n=2^{m+1}}^{2^{m+1}} \frac{1}{2^m} P(\max_{j \le 2^{m+1}} | X_j | \ge \varepsilon 2^{mr}) \\ & \le P(\max_{j \le 2^{m+1}} | X_j | \ge \frac{\varepsilon}{2^r} 2^{(m+1)r}). \end{split}$$

So (18) yields that

$$\sum_{n=1}^{\infty} \frac{1}{n} P(\max_{j \le n} | X_j | \ge \varepsilon 2^{mr}) < \infty, \forall \varepsilon > 0,$$

$$P(\max_{j \le n} | X_j | \ge \varepsilon n^r) \to 0, n \to \infty, \forall \varepsilon > 0,$$

$$P(\max_{j\leq n} |X_j| < \varepsilon n^r) \to 1, n \to \infty, \forall \varepsilon > 0.$$

Put
$$\varphi_0 = \lim_{n \to \infty} \varphi_n$$
, since $\varphi(1) < 1$, so $\varphi_0 < 1$.

$$P(\max_{i \le n} | X_j | < n^r) - \varphi(n) \to 1 - \varphi_0, n \to \infty.$$

There exists a positive integer $N \ge N_1$, such that

$$P(\max_{i \le n} |X_j| < n^r) - \varphi(N) > (1 - \varphi_0) / 2$$

Since $\{X_n, n \ge 1\}$ is identically distributed, so it follows from (19) and (22) that

$$\infty > \sum_{n=1}^{\infty} \frac{1}{n} P(\max_{j \le n} | X_j | \ge n^r)$$

$$= \sum_{n=1}^{N} \frac{1}{n} P(\max_{j \le n} | X_j | \ge n^r)$$

$$+ \sum_{n=N+1}^{\infty} \frac{1}{n} P(\max_{j \le n} | X_j | \ge n^r)$$

$$\ge \frac{1}{N} \sum_{n=1}^{N} P(| X_n | \ge n^r)$$

$$+ \sum_{n=N+1}^{\infty} \frac{1}{n} \sum_{i=1}^{\lfloor \frac{n}{N} \rfloor} P(|X_{(i-1)N+1}| \ge n^r, \max_{iN+1 < j \le n} |X_j| \ge n^r)$$

$$\ge \frac{1}{N} \sum_{n=1}^{N} P(|X_n| \ge n^r)$$

$$+ \frac{1 - \varphi_0}{2} \frac{1}{N(N+1)} \sum_{n=N+1}^{\infty} P(|X_n| \ge n^r)$$

$$\ge C_1 \sum_{n=1}^{N} P(|X_n| \ge n^r)$$

$$\ge C_2 E |X_1|^{1/r}$$

Where [x] denotes the integer part of x, C_1 , C_2 are constants. The proof of theorem 1 is complete.

Proof of theorem 2.

Since a ρ -mixing sequence is an α -mixing sequence, $\alpha(n)/4 \le \rho(n)$, so the necessity of theorem 2 follows from that of theorem 1 immediately.

Put
$$\alpha = 1/p$$
, $(1 \le p < 2)$ by lemma 5 we have

$$\sum_{n=1}^{\infty} n^{-1} P(\max_{j \le n} (|\mathcal{S}_j)| \ge \varepsilon n^{1/p}) < \infty.$$

$$\lim_{n\to\infty} n^{-1/p} S_n = 0.$$
 a.s.

It is easy to see (20) $\lim_{n\to\infty} n^{-1/p} S_n = 0. \quad a.s.$ This completes the proof of the sufficiency of theorem 2.

REFERENCES

- [1] Marcinkiewicz J. Zygmund A. Sur les functions independents, Fund. Math., 29:60-90(1937).
- [2] Wang xiaoming, A further discussion on the convergence rates of the strong law for non-stationary φ -mixing sequences. Acta Math. Sinica.40, 675-686 (1997).
- [3] Xue Liugen. Convergence rates of the strong law of large numbers for a mixing sequence(in Chinese). J.Sys.& Math.Scis,14, 213-221
- [4] Kuczmaszewska A. The strong law of large numbers for dependent random variables. Statist. Probab. Lett. 73, 305-314(2005)
- Shao Q. M. Maximal inequalities for partial sums of ρ -mixing sequences. Ann. Prob., 23, 948-965 (1995).
- Herrndorf N. The invariance principle for φ -mixing sequences. Z.Wahrsch. Verw Gebiete, 63, 97-108 (1983).
- [7] Meng Y. J., Lin Z.Y. Strong laws of large numbers for $\widetilde{\rho}$ -mixing random variables. J. Math. Anal. Appl. 365, 711-717(2010).
- Bryc W., Smolenski W., Moment conditions for almost sure convergence of weakly correlated random variables, Proc. Amer. Math. Soc. 119 (2), 629-635(1993).
- [9] Peligrad M., Gut A., Almost-sure results for a class of dependent random variables. J. Theoret. Probab. 12 (1) 87-104(1999).
- Kuczmaszewska A., On Chung-Teicher type strong law of large numbers for ρ*-mixing random variables, Discrete Dyn. Nat. Soc. (2008), Article ID 140548, 10 pp.
- [11]Yang S. C., Some moment inequalities for partial sums of random variables and their applications. Chinese Sci. Bull. 43 (17) 1823-1827(1998).