Strong Law of Large Numbers for α Mixing Sequences

Yang Wenquan
School of mathematics and computer sciences, Jianghan University, Wuhan, China
yangwenq@jhun.edu.cn

Abstract

For independent identically distributed random variables, the Marcinkiewicz strong law of large numbers is that sppose $E X_{n}=0$, Then $\quad n^{-1 / p} S_{n} \rightarrow 0, n \rightarrow \infty$, a.s. if and only if $E\left|X_{1}\right|^{p}<\infty$. Let $\left\{X_{n}, n \geq 1\right\}$ be an identically distributed α-mixing sequence of random variables, in this paper, the Marcinkiewicz's strong law of large numbers for $\left\{X_{n}, n \geq 1\right\}$ is discussed, by using Wang Xiaoming's BorellCantelli Lemma (Wang X. M.1997), we have the following equiverlences, $\forall \varepsilon>0$ $$
\begin{aligned} & 2^{-n r}\left(S_{2^{n}+2^{n-1}}-S_{2^{n}}\right) \rightarrow 0, n \rightarrow \infty, \text { a.s. } \Leftrightarrow \sum_{n=1}^{\infty} P\left(A_{n}^{(1)}\right)<\infty \\ & 2^{-n r}\left(S_{2^{n+1}}-S_{2^{n}+2^{n-1}}\right) \rightarrow 0, n \rightarrow \infty, \text { a.s. } \Leftrightarrow \sum_{n=1}^{\infty} P\left(A_{n}^{(2)}\right)<\infty \\ & 2^{-n r} \max _{2^{n} \leq j \leq 2^{n}+2^{n-1}}\left|S_{j}-S_{2^{n}}\right| \rightarrow 0, \quad n \rightarrow \infty, \quad \text { a.s. } \Leftrightarrow \sum_{n=1}^{\infty} P\left(B_{n}^{(1)}\right)<\infty, \\ & 2^{-n r} \max _{2^{n}+2^{n-1} \leq j \leq 2^{n+1}}\left|S_{j}-S_{2^{n}+2^{n-1}}\right| \rightarrow 0, n \rightarrow \infty, \text { a.s. } \Leftrightarrow \sum_{n=1}^{\infty} P\left(B_{n}^{(2)}\right)<\infty \end{aligned}
$$

By use of Herrndorf's maximal inequality (Herrndorf N. 1983), necessary conditions for Marcinkiewicz's strong law of large numbers are obtained, which require low mixing speed. As a consequence, by use of Shao Qiman's result(1995), we obtain the Marcinkiewicz's strong law of large numbers for ρ mixing sequence of random variables.

Keywords- α-mixing; strong law of large numbers; necessary conditions; strong convergence. AMS 2000 subject classication: 60F15, $60 G 50$.

I. INTRODUCTION AND MAIN RESULTS

Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of random variables,

$$
\begin{gathered}
\text { let } S_{n}=\sum_{i=1}^{n} X_{i}, n \geq 1 ; S_{0}=0, \\
\mathscr{F}_{1}^{k}=\sigma\left(X_{i}, 1 \leq i \leq k\right), \\
\mathscr{F}_{k}^{\infty}=\sigma\left(X_{i}, i \geq k\right)
\end{gathered}
$$

For $n \geq 0$, let

$$
\begin{gathered}
\alpha(n) @ \sup _{k \geq 1} \sup \{|P(A B)-P(A) P(B)|, \\
\left.A \in \mathscr{F}_{1}^{k}, B \in \mathscr{F}_{k+n}^{\infty}\right\} ; \\
\varphi(n) @ \sup _{k \geq 1} \sup \{|P(B / A)-P(B)|,
\end{gathered}
$$

$$
\left.A \in \mathscr{F}_{1}^{k}, B \in \mathscr{F}_{k+n}^{\infty}, P(A)>0\right\}
$$

$$
\begin{aligned}
& \rho(n) @ \sup _{k \geq 1} \sup \{|E X Y-E X E Y|: \\
& \qquad \begin{array}{l}
\left.X \in L_{2}\left(\mathscr{F}_{1}^{k}\right), Y \in L_{2}\left(\mathscr{F}_{k+n}^{\infty}\right)\right\} . \\
\text { If } \alpha(n) \rightarrow 0, \varphi(n) \rightarrow 0, \rho(n) \rightarrow 0, n \rightarrow \infty
\end{array}
\end{aligned}
$$ respectively, the $\left\{X_{n}, n \geq 1\right\}$ is called α-mixing, φ mixing, ρ-mixing respectively.

For i.i.d random variables, the Marcinkiewicz strong law of large numbers is that

Theorem A. sppose $E X_{n}=0$, Then

$$
\begin{equation*}
n^{-\frac{1}{p}} S_{n} \rightarrow 0, n \rightarrow \infty, a . s \tag{1}
\end{equation*}
$$

if and only if $\quad E\left|X_{1}\right|^{p}<\infty$.
Lately there has been a great amount of work on strong law of large numbers for dependent random variables, such as the discussion by Wang Xiaoming(1997) Xue Liugen(1994) on φ-mixing sequences, the discussion by Kuczmaszewska A.(2005), Shao Qiman(1995) on ρ-mixing sequences, and the discussion by Meng Y. J., Lin Z.Y.(2010), Bryc W. , Smolenski W.(1993), Peligrad M., Gut A. Yang S. C. (1998), Kuczmaszewska (2008) on $\beta($-mixing sequences. In this paper, we obtain the necessary conditions for strong law of large numbers similar to that of theorem A for α-mixing sequences.

Theorem 1. Let $\left\{X_{n}, n \geq 1\right\}$ be an identically distributed α-mixing sequence of random variables, assume that

$$
\begin{align*}
& \sum_{n=1}^{\infty} \alpha\left(2^{n}\right)<\infty \tag{2}\\
& \varphi(1)<1 \tag{3}
\end{align*}
$$

If for some $r>0$,

$$
\begin{align*}
& \lim _{n \rightarrow \infty} n^{-r} S_{n}=0 \tag{4}\\
& \quad E\left|X_{1}\right|^{\frac{1}{r}}<\infty \tag{5}
\end{align*}
$$

Then
Theorem 2. Let $\left\{X_{n}, n \geq 1\right\}$ be an identically distributed ρ-mixing sequence of random variables with
$E X_{n}=0$, assume that $1 \leq p<2, \varphi(1)<1$, $\sum_{n=1}^{\infty} \rho\left(2^{n}\right)<\infty$. Then

$$
\lim _{n \rightarrow \infty} n^{-1 / p} S_{n}=0 . \quad \text { a.s. }
$$

if and only if

$$
E\left|X_{1}\right|^{p}<\infty
$$

2. PROOF OF THE THEOREMS

To prove our theorem, we need the following lemmas.
Lemma 1. (Wang Xiaoming 1997) Let $\left\{X_{n}, n \geq 1\right\}$ be an α-mixing sequence of random variables, assume that $A_{n} \in \mathscr{F}_{u_{i}}^{-v_{i}}$, where u_{i} and v_{i} are positive integers satisfying $u_{i} \leq v_{i} \leq u_{i+1} \leq v_{i+1}, i=1,2, \mathrm{~L}$,
if $\sum_{i=1}^{\infty} \alpha\left(u_{i+1}-v_{i}\right)<\infty$, then

$$
P\left(A_{n}, \text { i.o. }\right)=1 \quad \Leftrightarrow \quad \sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty .
$$

Lemma 2. Suppose that $\left\{X_{n}, n \geq 1\right\}$ satisfies (2), then for $\mathrm{r}>0$,

$$
\begin{align*}
& 2^{-n r}\left(S_{2^{n}+2^{n-1}}-S_{2^{n}}\right) \rightarrow 0, n \rightarrow \infty, \text { a.s. } \tag{6}\\
& \quad \Leftrightarrow \quad \sum_{n=1}^{\infty} P\left(A_{n}^{(1)}\right)<\infty, \quad \forall \varepsilon>0
\end{align*}
$$

$2^{-n r}\left(S_{2^{n+1}}-S_{2^{n}+2^{n-1}}\right) \rightarrow 0, n \rightarrow \infty$, a.s.

$$
\begin{equation*}
\Longleftrightarrow \quad \sum_{n=1}^{\infty} P\left(A_{n}^{(2)}\right)<\infty, \quad \forall \varepsilon>0 \tag{8}
\end{equation*}
$$

Where

$$
\begin{align*}
& A_{n}^{(1)} @ A_{n}^{(1)}(\varepsilon, r) \tag{9}\\
& \quad @\left\{\mid S_{2^{n}+2^{n-1}}-S_{2^{n}} \geq \varepsilon 2^{n r}\right\}, n \geq 1 \\
& A_{n}^{(2)} @ A_{n}^{(2)}(\varepsilon, r) \\
& \quad @\left\{\mid S_{2^{n+1}}-S_{2^{n}+2^{n-1}} \geq \varepsilon 2^{n r}\right\}, n \geq 1
\end{align*}
$$

Proof. Clearly, $A_{n}^{(1)} \in \mathscr{F}_{2^{n+1}}^{3 \times x^{n-1}}$, then $u_{n}=2^{n}+1$, $v_{n}=3 \times 2^{n-1}$, by (2) we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \alpha\left(u_{n+1}-v_{n}\right)=\sum_{n=1}^{\infty} \alpha\left(2^{n-1}+1\right) \\
& \quad \leq \sum_{n=1}^{\infty} \alpha\left(2^{n-1}\right)<\infty
\end{aligned}
$$

By lemma 1, we have

$$
(7) \Leftarrow \Rightarrow P\left(A_{n}^{(1)}, \text { i. o. }\right)=0 \Longleftrightarrow(6) .
$$

Now, we prove $(8) \Leftarrow \Rightarrow(9)$.
Obviously, $\quad A_{n}^{(1)} \in \mathscr{F}_{3 \times 2^{2} 2^{n-1}+1}^{n+1}$, then $u_{n}=3 \times 2^{n-1}+1$, $v_{n}=2^{n+1}$, by (2) we have
$\sum_{n=1}^{\infty} \alpha\left(u_{n+1}-v_{n}\right)=\sum_{n=1}^{\infty} \alpha\left(2^{n}+1\right)$

$$
\leq \sum_{n=1}^{\infty} \alpha\left(2^{n}\right)<\infty
$$

By lemma 1, we have
(9) $\Leftarrow \Rightarrow P\left(A_{n}^{(2)}\right.$, i.o. $)=0 \Longleftrightarrow(8)$.

The proof of lemma 2 is complete.
Lemma 3. (Herrndorf N. 1983) Let $\left\{X_{n}, n \geq 1\right\}$ be an arbitrary sequences of random variables. Suppose that q is a positive integer. Then for any $a>0$, every positive integer $s \geq q+1$, and nonnegative integer m,

$$
\begin{aligned}
& \left(1-\varphi(q)-\max _{q \leq j \leq s} P\left(\left|S_{m+s}-S_{m+j}\right| \geq a\right)\right) \\
& \cdot P\left(\max _{j \leq s} \mid S_{m+j}-S_{m} \geq 3 a\right) \\
& \leq P\left(\left|S_{m+s}-S_{m}\right| \geq a\right)+P\left((q-1) \max _{j \leq s}\left|X_{m+j}\right| \geq a\right)
\end{aligned}
$$

Lemma 4. Suppose that $\left\{X_{n}, n \geq 1\right\}$ satisfies (2), then for $r>0$,

$$
\begin{align*}
& 2^{-n r} \max _{2^{n} \leq j \leq 2^{n}+2^{n-1}}\left|S_{j}-S_{2^{n}}\right| \rightarrow 0, \quad n \rightarrow \infty, \quad \text { a.s. } \\
& \Leftrightarrow \Rightarrow \sum_{n=1}^{\infty} P\left(B_{n}^{(1)}\right)<\infty, \quad \forall \varepsilon>0 ; \quad \text { (11) } \tag{10}\\
& 2^{-n r} \max _{2^{n}+2^{n-1} \leq j \leq 2^{n+1}}\left|S_{j}-S_{2^{n}+2^{n-1}}\right| \rightarrow 0, \quad n \rightarrow \infty, \quad \text { a.s. } \tag{12}
\end{align*}
$$

$\Longleftrightarrow \Longrightarrow \quad \sum_{n=1}^{\infty} P\left(B_{n}^{(2)}\right)<\infty, \quad \forall \varepsilon>0 ;$
Where

$$
\begin{align*}
B_{n}^{(1)} @ & B_{n}^{(1)}(\varepsilon, r) \tag{13}\\
& @\left\{_{2^{n} \leq j \leq 2^{n}+2^{n-1}} \mid S_{j}-S_{2^{n}} \geq \varepsilon 2^{n r}\right\}, n \geq 1 ; \\
B_{n}^{(2)} @ & B_{n}^{(2)}(\varepsilon, r) \\
& @\left\{_{2^{n}+2^{n-1} \leq j \leq 2^{n+1}}\left|S_{j}-S_{2^{n}+2^{n-1}}\right| \geq \varepsilon 2^{n r}\right\}, n \geq 1 .
\end{align*}
$$

Proof. Clearly, $B_{n}^{(1)} \in \mathscr{F}_{2^{n}+1}^{3 \times 2^{n-1}}$, then $u_{n}=2^{n}+1$, $v_{n}=3 \times 2^{n-1}$, by (2) we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \alpha\left(u_{n+1}-v_{n}\right)=\sum_{n=1}^{\infty} \alpha\left(2^{n-1}+1\right) \\
& \quad \leq \sum_{n=1}^{\infty} \alpha\left(2^{n-1}\right)<\infty
\end{aligned}
$$

By lemma 1 , we have

$$
(11) \Longleftrightarrow P\left(B_{n}^{(1)}, \text { i.o. }\right)=0 \Longleftrightarrow(10) .
$$

Now, we prove (12) $\Leftarrow \Rightarrow(13)$.
Obviously, $\quad B_{n}^{(1)} \in \mathscr{F}_{3 \times 2^{n-1}+1}^{2^{n+1}}$, then $u_{n}=3 \times 2^{n-1}+1$, $v_{n}=2^{n+1}$, by (2) we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \alpha\left(u_{n+1}-v_{n}\right)=\sum_{n=1}^{\infty} \alpha\left(2^{n}+1\right) \\
& \quad \leq \sum_{n=1}^{\infty} \alpha\left(2^{n}\right)<\infty
\end{aligned}
$$

By lemma 1, we have
$(13) \Leftarrow \Rightarrow P\left(A_{n}^{(2)}\right.$, i.o. $)=0 \Longleftrightarrow(12)$.
The proof of lemma 3 is complete.

Lemma 5. (Shao Q. M. 1995) Suppose that $1 / 2<\alpha \leq 1, p \alpha \geq 1$. Let $\left\{X_{n}, n \geq 1\right\} \quad$ be an identically distributed ρ-mixing sequence of random variables with $E X_{n}=0$ and $E\left|X_{n}\right|^{p}<\infty$. Assume that

$$
\sum_{n=1}^{\infty} \rho^{2 / r}\left(2^{n}\right)<\infty
$$

Where $r=2$ if $1 \leq p<2$ and $r>p$ if $\mathrm{p} \geq 2$, Then for all $\varepsilon>0$,

$$
\sum_{n=1}^{\infty} n^{p \alpha-2} P\left(\max _{i \leq n}\left|S_{i}\right| \geq \varepsilon n^{\alpha}\right)<\infty
$$

Proof of theorem 1. By (4), we have

$$
\begin{aligned}
& n^{-r} S_{n} \xrightarrow{P} 0, n \rightarrow \infty \\
& 2^{-n r}\left(S_{2^{n}+2^{n-1}}-S_{2^{n}}\right)=2^{-n r} S_{3 \times 2^{n-1}}-2^{-n r} S_{2^{n}} \\
& =\left(\frac{3}{2}\right)^{-r}\left(3 \times 2^{n-1}\right)^{-r} S_{3 \times 2^{n-1}}-2^{-n r} S_{2^{n}} \rightarrow 0 \\
& n \rightarrow \infty, \text { a.s }
\end{aligned}
$$

That is $(4) \Rightarrow(6)$.
By (14), we have

$$
\begin{aligned}
& 2^{-n r}\left(S_{2^{n+1}}-S_{2^{n}+2^{n-1}}\right) \\
& =2^{-n r} S_{2^{n+1}}-2^{-n r} S_{2^{n}+2^{n-1}} \\
& =2^{r}\left(2^{n+1}\right)^{-r} S_{2^{n+1}}-\left(\frac{3}{2}\right)^{-r}\left(3 \times 2^{n-1}\right)^{-r} S_{3 \times 2^{n-1}} \\
& \rightarrow 0, \quad n \rightarrow \infty, \text { a.s }
\end{aligned}
$$

That is $(4) \Rightarrow(8)$.
By lemma 2 we get $(6)+(8) \Rightarrow(7)+(9)$. In the following, we show that $(14)+(7) \Rightarrow(11)$.
Put $m=2^{n}, s=2^{n-1}, q=1, a=\varepsilon 2^{n r}$, by lemma 3 we obtain

$$
\begin{gathered}
\left(1-\varphi(q)-\max _{q \leq j \leq s} P\left(\left|S_{m+s}-S_{m+j}\right| \geq a\right)\right) \\
\cdot P\left(\max _{j \leq s}\left|S_{m+j}-S_{m}\right| \geq 3 a\right)
\end{gathered}
$$

$$
\leq P\left(\left|S_{m+s}-S_{m}\right| \geq a\right)+P\left((q-1) \max _{j \leq s}\left|X_{m+j}\right| \geq a\right)
$$

By (3), we get $1-\varphi(1)>0$,
$\max _{1 \leq j \leq 2^{n-1}} P\left(\left|S_{2^{n}+2^{n-1}}-S_{2^{n}+j}\right| \geq \varepsilon 2^{n r}\right)$
$\leq \max _{1 \leq j \leq 2^{n-1}}\left(P\left(\left\lvert\, S_{2^{n}+2^{n-1}} \geq \frac{\varepsilon}{2} 2^{n r}\right.\right)+P\left(\left|S_{2^{n}+j}\right| \geq \frac{\varepsilon}{2} 2^{n r}\right)\right)$
$\leq 2 \max _{1 \leq j \leq 2^{n-1}} P\left(\left|S_{2^{n}+j}\right| \geq \frac{\varepsilon}{2} 2^{n r}\right)$
Combining $1-\varphi(1)>0$ with (14) yields that there exists a positive integer N_{1} such that for $n>N_{1}$, $2 \max _{1 \leq j \leq 2^{n-1}} P\left(\left|S_{2^{n}+j}\right| \geq \frac{\varepsilon}{2} 2^{n r}\right) \leq \frac{1}{2}(1-\phi(1))$.
Hence,
$\max _{1 \leq j \leq 2^{n-1}} P\left(\left|S_{2^{n}+2^{n-1}}-S_{2^{n}+j}\right| \geq \varepsilon 2^{n r}\right) \leq \frac{1}{2}(1-\phi(1))$,
By (15), we obtain

$$
\begin{aligned}
& \max _{j \leq 2^{n-1}} P\left(\mid S_{2^{n}+j}-S_{2^{n}} \geq 3 \varepsilon 2^{n r}\right) \\
& \quad \leq 2(1-\phi(1))^{-1} P\left(\left|S_{2^{n}+2^{n-1}}-S_{2^{n}}\right| \geq \varepsilon 2^{n r}\right)
\end{aligned}
$$

So (11) follows from (7) immediately. In the following, we show that
$(11)+(13) \Rightarrow$

$$
\begin{equation*}
P\left(\max _{2^{n}<j \leq 2^{n+1}}\left|S_{2 j}-S_{2^{n}}\right| \geq \varepsilon 2^{n r}\right) \leq \infty, \quad \forall \varepsilon>0 \tag{16}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \left\{\max _{2^{n}<j \leq 2^{n+1}}\left|S_{j}-S_{2^{n}}\right| \geq \varepsilon 2^{n r}\right\} \\
& =\left\{\max _{2^{n}<j \leq 2^{n}+2^{n-1}}\left|S_{j}-S_{2^{n}}\right| \geq \varepsilon 2^{n r}\right\} \\
& \mathrm{U}\left\{\max _{2^{n}+2^{n-1}<j \leq 2^{n+1}}\left|S_{j}-S_{2^{n}}\right| \geq \varepsilon 2^{n r}\right\} \\
& \subset B_{n}^{(1)}(\varepsilon, r) \\
& \quad \mathrm{U}\left\{\max _{2^{n}+2^{n-1}<j \leq 2^{n+1}}\left|S_{j}-S_{2^{n}+2^{n-1}}\right| \geq \frac{\varepsilon}{2} 2^{n r}\right\} \\
& \mathrm{U}\left\{\left|S_{2^{n}+2^{n-1}}-S_{2^{n}}\right| \geq \frac{\varepsilon}{2} 2^{n r}\right\}
\end{aligned}
$$

$\subset B_{n}^{(1)}(\varepsilon / 2, r) \mathrm{U} B_{n}^{(2)}(\varepsilon / 2, r), \forall \varepsilon>0$.
So (16) follows from (11) and (13) immediately. Since
$P\left(\max _{2^{n}<j \leq 2^{n+1}}\left|X_{j}\right| \geq \varepsilon 2^{n r}\right)$
$=P\left(\max _{2^{n}<j \leq 2^{n+1}}\left|S_{j}-S_{j-1}\right| \geq \varepsilon 2^{n r}\right)$
$\leq P\left(\max _{2^{n}<j \leq 2^{n+1}} \left\lvert\, S_{j}-S_{2^{n}} \geq \frac{\varepsilon}{2} 2^{n r}\right.\right)$

$$
\begin{aligned}
& +P\left(\max _{2^{n}<j \leq 2^{n+1}}\left|S_{j-1}-S_{2^{n}}\right| \geq \frac{\varepsilon}{2} 2^{n r}\right) \\
\leq & 2 P\left(\max _{2^{n}<j \leq 2^{n+1}} \left\lvert\, S_{j}-S_{2^{n}} \geq \frac{\varepsilon}{2} 2^{n r}\right.\right)
\end{aligned}
$$

So (16) yields that

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(\max _{2^{n}<j \leq 2^{n+1}}\left|X_{j}\right| \geq \varepsilon 2^{n r}\right)<\infty, \forall \varepsilon>0 \tag{17}
\end{equation*}
$$

It follows from (17) that

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(\max _{j \leq 2^{n}}\left|X_{j}\right| \geq \varepsilon 2^{n r}\right)<\infty, \forall \varepsilon>0 \tag{18}
\end{equation*}
$$

It is easy to see that

$$
\begin{aligned}
& \sum_{n=2^{m}+1}^{2^{m+1}} \frac{1}{n} P\left(\max _{j \leq n}\left|X_{j}\right| \geq \varepsilon n^{r}\right) \\
& \quad \leq \sum_{n=2^{m}+1}^{2^{m+1}} \frac{1}{2^{m}} P\left(\max _{j \leq 2^{m+1}}\left|X_{j}\right| \geq \varepsilon 2^{m r}\right) \\
& \quad \leq P\left(\max _{j \leq 2^{m+1}}\left|X_{j}\right| \geq \frac{\varepsilon}{2^{r}} 2^{(m+1) r}\right)
\end{aligned}
$$

So (18) yields that
$\sum_{n=1}^{\infty} \frac{1}{n} P\left(\max _{j \leq n}\left|X_{j}\right| \geq \varepsilon 2^{m r}\right)<\infty, \forall \varepsilon>0$,
$P\left(\max _{j \leq n}\left|X_{j}\right| \geq \varepsilon n^{r}\right) \rightarrow 0, n \rightarrow \infty, \forall \varepsilon>0$,
$P\left(\max _{j \leq n}\left|X_{j}\right|<\varepsilon n^{r}\right) \rightarrow 1, n \rightarrow \infty, \forall \varepsilon>0$.
Put $\varphi_{0}=\lim _{n \rightarrow \infty} \varphi_{n}$, since $\varphi(1)<1$, so $\varphi_{0}<1$
$P\left(\max _{j \leq n}\left|X_{j}\right|<n^{r}\right)-\varphi(n) \rightarrow 1-\varphi_{0}, n \rightarrow \infty$.
There exists a positive integer $N \geq N_{1}$, such that for $n>N$,

$$
P\left(\max _{j \leq n}\left|X_{j}\right|<n^{r}\right)-\varphi(N)>\left(1-\varphi_{0}\right) / 2
$$

Since $\left\{X_{n}, n \geq 1\right\}$ is identically distributed, so it follows from (19) and (22) that

$$
\begin{aligned}
\infty & >\sum_{n=1}^{\infty} \frac{1}{n} P\left(\max _{j \leq n}\left|X_{j}\right| \geq n^{r}\right) \\
= & \sum_{n=1}^{N} \frac{1}{n} P\left(\max _{j \leq n}\left|X_{j}\right| \geq n^{r}\right) \\
& +\sum_{n=N+1}^{\infty} \frac{1}{n} P\left(\max _{j \leq n}\left|X_{j}\right| \geq n^{r}\right) \\
\geq & \frac{1}{N} \sum_{n=1}^{N} P\left(\left|X_{n}\right| \geq n^{r}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\sum_{n=N+1}^{\infty} \frac{1}{n} \sum_{i=1}^{\left[\frac{n}{N}\right]} P\left(\left|X_{(i-1) N+1} \geq n^{r}, \max _{i N+1<j \leq n}\right| X_{j} \mid \geq n^{r}\right) \\
& \geq \\
& \frac{1}{N} \sum_{n=1}^{N} P\left(\left|X_{n}\right| \geq n^{r}\right) \\
& \quad+\frac{1-\varphi_{0}}{2} \frac{1}{N(N+1)} \sum_{n=N+1}^{\infty} P\left(\left|X_{n}\right| \geq n^{r}\right) \\
& \geq
\end{aligned} C_{1} \sum_{n=1}^{N} P\left(\left|X_{n}\right| \geq n^{r}\right) \quad . \quad C_{2} E\left|X_{1}\right|^{1 / r}
$$

Where $[x]$ denotes the integer part of x, C_{1}, C_{2} are constants. The proof of theorem 1 is complete.

Proof of theorem 2.

Since a ρ-mixing sequence is an α-mixing sequence, $\alpha(n) / 4 \leq \rho(n)$, so the necessity of theorem 2 follows from that of theorem 1 immediately.

Put $\alpha=1 / \mathrm{p},(1 \leq p<2)$ by lemma 5 we have

$$
\sum_{n=1}^{\infty} n^{-1} P\left(\max _{j \leq n}\left(\mid \widehat{G}_{j}\right) \mid \geq \varepsilon n^{1 / p}\right)<\infty
$$

It is easy to see

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1 / p} S_{n}=0 . \quad \text { a.s. } \tag{20}
\end{equation*}
$$

This completes the proof of the sufficiency of theorem 2.

REFERENCES

[1] Marcinkiewicz J. Zygmund A. Sur les functions independents, Fund. Math., 29 :60-90(1937).
[2] Wang xiaoming, A further discussion on the convergence rates of the strong law for non-stationary φ-mixing sequences. Acta Math. Sinica,40, 675-686 (1997).
[3] Xue Liugen. Convergence rates of the strong law of large numbers for a mixing sequence(in Chinese). J.Sys.\& Math.Scis,14, 213-221 (1994).
[4] Kuczmaszewska A. The strong law of large numbers for dependent random variables. Statist. Probab. Lett. 73, 305-314(2005).
[5] Shao Q. M. Maximal inequalities for partial sums of ρ-mixing sequences. Ann. Prob., 23, 948-965 (1995).
[6] Herrndorf N . The invariance principle for φ-mixing sequences. Z.Wahrsch.Verw Gebiete, 63, 97-108 (1983).
[7] Meng Y. J., Lin Z.Y. Strong laws of large numbers for $\widetilde{\rho}$-mixing random variables. J. Math. Anal. Appl. 365, 711-717(2010).
[8] Bryc W., Smolenski W., Moment conditions for almost sure convergence of weakly correlated random variables, Proc. Amer. Math. Soc. 119 (2) , 629-635(1993).
[9] Peligrad M., Gut A., Almost-sure results for a class of dependent random variables. J. Theoret. Probab. 12 (1) 87-104(1999).
[10] Kuczmaszewska A., On Chung-Teicher type strong law of large numbers for $\rho *$-mixing random variables, Discrete Dyn. Nat. Soc. (2008), Article ID $140548,10 \mathrm{pp}$.
[11]Yang S. C., Some moment inequalities for partial sums of random variables and their applications. Chinese Sci. Bull. 43 (17) 18231827(1998).

