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Abstract - In this paper, we develop a fast numerical scheme 

for computing the European option pricing problems governed by the 

Black-Scholes equation. We prove that the proposed scheme has 

second order accuracy in both time and space. Under some 

restrictions, the stability of the proposed method in the sense of Von 

Neumann analysis is presented. It is shown that the proposed scheme 

has a good performance in the sense of the computational cost 

compare to the Crank-Nicolson scheme. Also the accuracy of the 

proposed scheme is better than the semi-implicit scheme in most 

cases.  

Index Terms - Black-Scholes equation, European option 

pricing, asymmetric scheme, stability analysis, numerical example 

1. Introduction 

Black and Scholes (1973) firstly proposed an analytical 

formula for evaluating European call options value satisfying 

a lognormal diffusion partial differential equation which is 

now known as the celebrated Black-Scholes equation [1].  

In option pricing problems, central difference second-

order finite differences (FDs) are commonly used for solving 

the Black-Scholes (B-S) equation. A recent work by 

Xiaozhong Yang and Lifei Wu [2] has focused on the use of 

the semi-implicit difference scheme for pricing vanilla options. 

The scheme is very efficient in the sense of the computational 

cost, but the semi-implicit difference scheme causes a low 

order rate (first order) of convergence for the time. 

The aim of this paper is to improve the semi-implicit 

difference scheme. We propose a two-step asymmetric 

difference scheme which has the second order accuracy in 

both time and space. It is shown that the proposed asymmetric 

scheme has higher accuracy than the semi-implicit difference 

scheme in most cases. It is also seen that the computational 

cost of the asymmetric method is superior to the Crank-

Nicolson scheme.  

We begin the paper with the introduction of 

mathematical models for European call options. To avoid 

confusion, we will use the same notations in [2]. Assume that 

V is the call option value, S is the asset price, t is the time. Let 

r,  , q denote the risk-free interest rate, the volatility of the 

asset price and the continuous dividend yield, respectively. So 

the models considered in this paper are based on the Black-

Scholes partial differential equation [1] 
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where the explicit expression of B-S equation [1]: 
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The boundary condition of the Black-Scholes is given by: 

                 . 

Introducing the change of variables 

                                    , 

(1) can be rewritten as following 

  

  
 

  

 

   

   
      

  

 
 
  

  
              (3) 

Then the associated boundary condition is given by 

   
    

            
   

             

Assume that the solution region is: 

                  
 

 

In order to construct a two-step asymmetric difference 

scheme, we first discredit the region       an uniform grid 

with space step h and time step k, 

                   

                            ). 

Let   
  denote the numerical approximation  of the 

solution        . Firstly, the time derivative 
  

  
  at each grid  

point           can be approximated by the BDF1: 

  

  
 
  
      

 

 
  

Secondary, for constructing the second order asymmetric 

finite difference method, the first and the second derivative 

for spatial variables can be approximated by : 

  

  
 
    
    

    
        

   

  
  

   

   
 
    
    

    
        

   

  
  

Here    is approximated by   
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Hence, (1) can be rewritten as following: 
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And the above equation can be simplified as: 
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where 

   
           

  

 
 

                    
  

 
 
 

   
                    

  

 
 

                    
  

 
 
 

   
           

  

 
 

                    
  

 
 
 

Similarly if the first and the second derivative for spatial 

variable are approximated as follows 

  

  
 
    
      

      
      

 

  
  

   

   
 
    
      

      
      

 

  
  

then, the form of (1) can be rewritten as: 
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Also the above equation can be simplified as: 
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where 

   
           

  

 
 

                    
  

 
 
 

   
                    

  

 
 

                    
  

 
 
 

   
           

  

 
 

                    
  

 
 
 

Finally, the asymmetric scheme for the model problem is 

designed as follows: at each time level, the approximation 

  
    are obtained by using the scheme (5) from left 

boundary and   
    are calculated by scheme (7) from right 

boundary. Once both approximations are computed, the final 

approximations   
   are taken with arithmetic mean of   

    

and   
   . More precisely, the proposed scheme is 

summarized as: 
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2. Error Analysis 

Note the truncation error of the asymmetric scheme (8) is : 
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Applying the Taylor expansion of the term T(k,h) about 

the point         ,  we have: 
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3. Analysis of Stability and Convergence 

In this section, we will analysis the stability of the 

scheme (8). Let us consider the stabilized condition of (4). 

Denote   
         , where       is the imaginary unit 

and Q is the wave number. Then (5) becomes: 
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Define         
      

   

     
     . 

Based on the Von Neumann analysis, Equation (4) is 

stable if            . We define        
  

 
  and 

  
   

   
. Then the stabilized condition of (4) is given by: 

  
                                                  

                 
    

 
 

    

 
               

   

   Similarly we use the same idea to calculate the stabilized 

condition of (6). Then the stability condition is shown as : 

 

                                                         

                
    

 
 
    

 
               

  

In conclusion, we have:  

Theorem 1. When      the scheme (8) for solving the 

payment of dividend Black-Scholes equation is unconditional 

stable;                  
    

 
 

    

 
  , the scheme 

(8) is stable ;                 
    

 
 

    

 
    the 

scheme (8) is stable. 

4. Numerical Results and Conclusion 

   In this section, we implement numerical simulations to 

price European call options, which is calculated by MATLAB 

R2011b. 

Example 1:  

Let us consider the European call option where the 

parameters used in the simulation are: 

                   

                     

The reference value for this example is 6.029529. In 

Tables 1&2, value denotes the European call options obtained 

by (8), where M is the number of time steps and N is the 

number of spatial steps. 

Table 1. The value and error obtained by empolying the proposed method 

with fixed time step size and varying the number of spatial grids. 

M N Value Error Order 

1200 128 6.069953 0.040424 - 

1200 256 6.047313 0.017784 1.185 

1200 512 6.026426 0.003103 2.519 

1200 1024 6.028804 0.000725 2.097 

Table 2. The value and error obtained by empolying the proposed method 

with fixed spatial discretization and varying the time step sizes. 

N M Value Error Order 

1400 120 6.011806 0.017723 - 

1400 240 6.025169 0.004360 2.023 

1400 480 6.028496 0.001033 2.077 

1400 960 6.029327 0.000202 2.352 

As observed in Tables 1&2, the numerical results show 

that the proposed scheme (8) has second-order convergence. 

Table 3 shows the comparison of the computation time 

between the second order asymmetric difference method 

(short for ADM) and the Crank-Nicolson method (short for C-

N). 

Table 3 Comparisons between the proposed method and the Crank-Nicolson 
method by varying the time step sizes and the number of spatial grids. 

 

M 

 

N 

CPU time(Sec) 

ADM C-N 

200 512 0.069040 0.192794 

400 1024 0.123246 2.209242 

800 2048 0.862435 14.059381 

The figures of Table3 show ADM is superior to C-N. 

Example 2: 

Here we choose the parameters as follows. 

                  

                     

We fix the spatial step number with N=900, and vary the 

time step number M from 1200 to 1440. The errors of both the 

semi-implicit method and the second order asymmetric 

difference method are plotted in the figure 1. As showed in 

Figure, the error of the proposed method is faster decreasing 

than the semi-implicit difference scheme as increasing the 

number of time step M. Therefore, the proposed scheme is 

superior to the semi-implicit method in sense of the efficiency 

of computational costs. 

 

Figure 1 Error behaviors of the proposed method and the semi-implicit 
method with fixed N=900 and varying M from 1200 to 1440. 

5. Conclusion 

   In this paper, we developed a second-order asymmetric 

method for solving the European call options. The accuracy of 

the asymmetric scheme is better than the semi-implicit 

scheme in most case. It also shows that the computational cost 

of the present method is superior to the Crank-Nicolson 

method. 
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