
Image Encryption Using Keystreams Dependent   
on Plain-images 

The communications of digital products over network grow rapidly in the past 
decades, and consequently it has been an urgent need to prevent them from leak-
ages. Many applications, such as military image databases, confidential video con-
ference, private photograph album, etc. require reliable, fast and robust secure sys-
tem to store and transmit digital images. The requirements to fulfil the security 
needs of digital images have led to the development of effective image encryption 
algorithms. Digital images possess some intrinsic features, such as bulk data ca-
pacity, redundancy of data, strong correlation among adjacent pixels, being less 
sensitive as compared to the text data, etc. As a result, most conventional ciphers, 
such as Data Encryption Standard (DES), International Data Encryption Algo-
rithm (IDEA), Advanced Encryption Standard (AES) [1], which consider plain-
image as either block cipher or data stream, are thereby not suitable for practical 
digital image encryption in real time, because their speed is low due to a bulk data 
volume and strong correlation among adjacent pixels. Fortunately, many chaos-
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Abstract. A novel chaos-based image encryption scheme is proposed in this pa-
per. The encryption scheme consists of one permutation process and one diffusion 
process, in which the key streams are both one-time keys in the sense that they are 
dependent on plain-images. Several merits of the proposed image encryption 
scheme are achieved, including a huge key space, good statistical properties resist-
ing statistical attack and differential attack, desirable resistance against known-
plaintext and chosen-plaintext attacks. Experimental results have been carried out 
with detailed analysis to show that the proposed scheme can be a potential candi-
date for practical image encryption.   
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based image encryption algorithms have been proposed in recent years and have 
shown their superior performance [2,3,4,5]. The reason of applying chaos theory 
in cryptography lies in its intrinsic features, such as ergodicity, pseudo-
randomness, sensitivity to initial conditions and control parameters, etc. These 
chaotic characteristics are in accordance with the requirements of confusion and 
diffusion in cryptography [6].  

Recently, a number of chaos-based image encryption algorithms have been 
broken [7,8,9], among which most of the key streams are not dependent on plain-
images. The opponents can analyze the cryptography schemes via chosen-
plaintext attack or known-plaintext attack to obtain the keystreams and so equiva-
lently break the cipher systems. To overcome the drawbacks, a novel chaos-based 
image encryption scheme is proposed in this paper. The image encryption scheme 
consists of one permutation process and one diffusion process. In both processes, 
the keystreams not only depend on the cipher keys, but also closely relate to the 
original plain-images. Several merits of the proposed image encryption scheme 
are achieved, including a huge key space, good statistical properties resisting sta-
tistical attack and differential attack, desirable resistance against s known-plaintext 
and chosen-plaintext attacks. Experimental results have been carried out with de-
tailed analysis to show that the proposed encryption scheme is highly secure.   

2  The Generalized Arnold Map 

Arnold map was proposed by V. I. Arnold in the research of ergodic theory; it is 
also called cat map. The map is a process of clipping and splicing that realign the 
pixel matrix of digital image. The classical Arnold map is an invertible map de-
scribed by 
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where the notation “ mod 1x ” refers to the fractional part of a real number x  by 
adding or subtracting an appropriate integer. The classical Arnold map (1) can be 
generalized to the following form by introducing two control parameters 0a > and 

0b > : 
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It is easy to calculate the largest Lyapunov characteristic exponent of the map 
(2) is greater than 1, implying that the map is always chaotic for 0a > , 0b > . 
Note that the leading Lyapunov characteristic exponent is larger than that of the 
map (1) as 1a > , 1b > . It implies that the map (2) is in a stronger sense chaotic, 
and therefore can perform better data mixing. 
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3  The Image Encyption Scheme 

3.1  Permutation Process 

Thanks to chaotic nature of generalized Arnold map on the unit square 2[0,1) , one 
can easily get the chaotic orbit{( , ), 0,1, }k kx y k =  of 0 0( , )x y  with given control 
parameters ,a b . As long as the orbit point number tends to infinity, the orbit will 
go through the unit square 2[0,1) theoretically. As for the discrete case, all the pix-
els will be traversal if we iterate the chaotic map with sufficient times. For the 
sake of saving workload, we confine the iteration times 510MaxIter = , and  the 
pixels, which are not ergodic, are  arranged orderly in the end of the shuffled im-
age. We denote the plain-image A and the shuffled image B with height H and 
width W . We also set an initial vector V with length H W× . The permutation 
process is stated as follows.  

Step 1. Set the values of the control parameters 1 1 2 2 3 3, , , , ,a b a b a b  and the initial 
conditions 0 0,x y , say  

1 1 2 2  1.11,    10.22,     20.33,    30.44a b a b= = = = ,  

3 3 0 0  40.55,    50.66,   0.05,    0.5a b x y= = = = . 
Step 2. Calculate 1 1( , )x y  by 

01 1

01 1 1 1

1
mod 1

1
xx a
yy b a b

    
=     +    

. 

Then we get the first pixel coordinates by 1 1 1 1( , ) ( , )s t floor x W y H= × × ,and set 

1 1(1) ( , )V A s t= , 0, 1k j= = . 
Step 3. Choose the corresponding generalized Arnold map by the gray value kg  

of the plain image at ( , )k ks t . There are three generalized Arnold maps can be 
chosen.   Let mod 3kg i= , then  
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,  

1 1 1 1( , ) ( , )k k k ks t floor x W y H+ + + += × × . 
Step 4. If 1 1( , )k ks t+ +  has not appeared before, then set 1, 1j j k k= + = + and 

1 1( ) ( , )k kV j A s t+ += ; otherwise, set 1k k= + . Return to Step 3 until k arrives 
at MaxIter . 

Step 5. Put the pixels not processed after Step 4 orderly to the remainder part of 
vector V . Reshape V into one 2D matrix B denoting the shuffled image. 

 

749



   

3.2  Diffusion Process  

It is necessary that a secure encryption algorithm should have a good mechanism 
of diffusion. On one hand, the diffusion processing can render the permutation 
process non-invertible, which therefore strengthens the security. On the other 
hand, the diffusion processing can significantly change the statistical properties of 
the plain-image by spreading the influence of each bit of the plain-image all over 
the cipher-image.  The diffusion process will generally enhance the resistance to 
statistical attack and differential attack greatly, in which the histogram of the ci-
pher-image is fairly uniform and is significantly different from that of the plain-
image. The opponent can’t find any useful clues between the plain-image and the 
cipher-image and so can’t break the cryptosystem even after they spend a lot of 
time and effort. A good diffusion process should yield keystreams strongly related 
to plain-images. When encrypting different plain-images (even with the same ci-
pher keys), the encryption scheme should generate different keystreams. The dif-
fusion process is outlined as follows.  

Step 1. Applying the permutation process to confuse the plain-image A  and get 
a shuffled image B . Set the values of the initial condition 0z  and the control pa-
rameters 4 4, ,a b c , say 0 4 40.33, 0.7, 60.77 70.88z c a b= = = , = , in the diffusion 
process.  

Step 2. Let 0i = .  
Step 3. Apply the following quantization formula to yield one 8-bit pseudo-

random grey values 1 2( ), ( )d i d i : 1 2( ) floor( ), ( ) floor( )i id i L x d i L y= × = × ,where 
L  is the color level (for a 256 grey-scale image, 256L = ), the “floor" operation 
on x  returns the largest value not greater than x . 0 0 = 0.05, y  = 0.5x are set in the 
permutation process. 

Step 4. Compute the pixel grey value in the cipher-image by a bi-directional dif-
fusion transmission:  

( )
( )

1

2

2 1 (2 ) [( ( ) (2 ))mod 256];

2 2 (2 1) [( ( ) (2 1))mod 256],

C i i d i C i

C i i d i C i

φ

φ

+ = ⊕ +

+ = + ⊕ + +
 

where (2 ), (2 1)i iφ φ +  are the grey values of the current operated pixel in the shuf-
fled image which has been rearranged according to the order of row or column to 
a vector with length H W× , (2 )C i  is the previous output cipher-pixel grey value. 
The diffusion process is well defined as the initial condition (0)C  is provided. 

(0)C  can be set to be part of the keys in the diffusion process or can just take the 
value of 1(0)d  for simplicity.  

Step 5. Compute s  by 1 [ (2 1)mod 2]s C i= + +  to get the next 1 1( , )i ix y+ +  by 
iterating the generalized Arnold map with control parameters 4 4,a b  on ( , )i ix y  for 
s  rounds. This is the crucial step to generate a keystream depending on the plain-

750



   

image since s  is related to (2 1)C i + , so are 1 1,i ix y+ + . The encrypted image not 
only relates to the cipher keys, but also relates to the plain-image.  

Step 6. Let 1i i= +  and return to Step 3 until i  reaches / 2H W× .  
 
The above diffusion process implies that it can’t influence the pixels before the 

tampered pixel with a grey value change. As a remedy, we here add a reverse dif-
fusion process as a supplement to the above diffusion process. The chaotic map 
used here is the generalized Bernoulli shift map. 

Step 7. Iterate the following generalized Bernoulli shift map to produce another 
pseudo-random grey value sequence 

( )1 mod  1k kz z c+ = , 1( 1) floor( ) 0 1 ... 1kk L z k H Wψ ++ = × , = , , , × − .  
Step 8. Execute the reverse diffusion process:  

( ) ( ) 1 [( ( ) ( ))mod ] ... 2 1D i D i C i i L i H Wψ= + ⊕ + , = × , , , ,  
where ( ) 1 2 ...D i i H W, = , , , ×  are the final encrypted vector consisting of the en-
crypted image pixel grey-scale values. The value of ( 1)D H W× +  should be pro-
vided to cipher out the sequence ( ) 1 2 ...D i i H W, = , , , × . ( 1)D H W× + can be  han-
dled in the same way as (0)C .  

The complete diffusion process is composed of Step 1 to Step 8. The permuta-
tion process and the diffusion process form the proposed image encryption 
scheme. The original image Lena is encrypted and the result is shown in Fig.1 (b). 

 
 Fig. 1  The encrypted results 
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4  Secur ity Analysis 

4.1 Key Space Analysis 

A good image encryption scheme aims to protect secret information so that it must 
contain sufficiently large key space for compensating the degradation dynamics in 
PC.   Since the permutation process is irrelevant to the diffusion process, the key 
space consists of the cipher keys in both processes. The control parameters 

1 1, ,a b 2 2 3 3 4 4, , , , ,a b a b a b , c and the initial values 0 0,x y , 0z  form the cipher keys. 
The sensitive tests with respect to all cipher keys have been carried out. To verify 
the sensitivity of key parameter  K , the original plain-image ( )( ),

M N
I I i j

×
=  is 

encrypted with K p= , K p δ= − ∆  and K p δ= + ∆  respectively while keeping 
the other key parameters unchanged. The corresponding encrypted images are de-
noted by 1 2 3, ,I I I respectively. The sensitivity coefficient to the parameter K  is 
denoted by the following formula 

( ) ( ) ( )( ) ( ) ( )( )1 2 1 3
,

100 , , , , , ,
2s s s

i j
P K N I i j I i j N I i j I i j

W N
 = + × × ∑  

where ( ), 1sN x y = ,if x y≠ , otherwise ( ), 0sN x y = , and δ∆  is the perturbing 

value. ( )sP K  implies the sensitivity to the perturbation of parameter K . Table 1  
shows the results of the sensitivity test where the initial key values are set to be  

1 1 2 2 3 3  1.11,    10.22,     20.33,    30.44,   40.55,    50.66,a b a b a b= = = = = =  
0 0 0 4 4  0.05,    0.5, 0.33, 0.7, 60.77, 70.88.x y z c a b= = = = = =      

The variations δ∆  are 1610− for 0 0 0, , ,x y z c ,  1510− for 1 1,a b , and 1410− for the 
other keys. The results in Table 1 imply that the cipher keys are strongly sensitive. 
It also implies from the results that the key space is more than 17810 , which is 
large enough to make brute-force attack infeasible.  

Table 1  Results regarding the sensitivity to cipher keys 

K  0x  0y  1a  1b  

( )sP K  99.60 99.59 99.63 99.63 
     
K  2a  2b  3a  3b  

( )sP K  99.60 99.60 99.58 99.61 
     
K  4a  4b  0z  0c  

( )sP K  99.61 99.57 99.61 99.58 
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4.2 Statistical Analysis 

Shannon pointed out in his masterpiece the possibility to solve many kinds of ci-
phers by statistical analysis [6]. Therefore, passing the statistical analysis on ci-
pher-image is of crucial importance for a cryptosystem. Indeed, an ideal crypto-
system should be robust against any statistical attack. In order to prove the 
security of the proposed encryption scheme, the following statistical tests are per-
formed. 

(i) Histogram. Encrypt the image Lena with one round, and then plot the histo-
grams of plain-image and cipher-image as shown in Figs.1 (c)–(d), respectively. 
Fig.1 (d) shows that the histogram of the cipher-image is fairly uniform and signif-
icantly different from the histogram of the original image and hence it does not 
provide any useful information for the opponents to perform any statistical analy-
sis attack on the encrypted image. 

(ii) Correlation of adjacent pixels. To test the correlation between two adjacent 
pixels, the following performances are carried out. First, we select 6000 pairs of 
two adjacent pixels randomly from coefficient of the selected pairs using the fol-
lowing formulae: 

( )
( ) ( )

cov ,
,

x y
Cr

D x D y
= ( ) ( )( ) ( )( )

1

1cov ,
T

i i
i

x y x E x y E y
T =

= − −∑ , 

( ) ( ) ( )( )2

1 1

1 1,
T T

i i
i i

E x x D x x E x
T T= =

= = −∑ ∑ , 

where ,x y are the gray-scale values of two adjacent pixels in the image and T is 
the total pairs of pixels randomly selected from the image. The correlations of two 
adjacent pixels in the plain-image and in the cipher-image are shown in Table 2.  

Table 2  Correlation coefficients of two adjacent pixels 

 Plain-image Cipher-image 
Horizontal 0.9488 0.0051 
Vertical 0.9658 -0.0095 
Diagonal 0.9219 -0.0081 

4.3 Differential Attack 

In general, attackers may make a slight change (e.g., modify only one pixel) of the 
plain-image to find out some meaningful relationships between the plain-image 
and the cipher-image. If one minor change in the plain-image will cause a signifi-
cant change in the cipher-image, then the encryption scheme will resist the diffe-
rential attack efficiently. To test the influence of only one-pixel change in the 
plain-image over the whole cipher-image, two common measures are used: num-
ber of pixels change rate (NPCR) and unified average changing intensity (UACI).  
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,
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i j
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,
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where 1 2,C C  are the two cipher-images corresponding to two plain images with 
only one pixel difference, W  and H  are the width and height of the processed 
image, D  is a bipolar array with the same size as image 1C . ( , )D i j  is determined 
as: if 1 2( , ) ( , )C i j C i j= , then ( , ) 0D i j = , otherwise ( , ) 1D i j = .  

NPCR measures the percentage of different pixel numbers between the two ci-
pher-images whose plain-images only have one-pixel difference. UACI measures 
the average intensity of differences between the two cipher-images. To resist dif-
ference attacks, the values of NPCR and UACI should be large enough. The test of 
the plain-image is Lena. We randomly select 10 pixels and change the gray values 
with a difference of 1, for example, we replace the gray value 73 of the pixel at 
position (150,11) by 74, and get the NPCR=99.70%, UACI=39.10%. The mean 
values of the ten NPCR and UACI values are 99.78% and 39.13% respectively. 
The two measure values are exceptionally good undergoing only one round of en-
cryption. 
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